摘要:
A tunable clock distribution system is used to minimize the power dissipation of a clock distribution network in an integrated circuit. The tunable clock distribution system provides a tunable inductance on the clock distribution network to adjust a resonant frequency in the tunable clock distribution system. The inductance is tuned so that the resonant frequency of the tunable clock distribution system approaches the frequency of the clock signal on the clock distribution network. As the resonant frequency of the tunable clock distribution system approaches the frequency of the clock signal, the power dissipation of the clock distribution network decreases. Some embodiments also provide a tunable capacitance on the clock distribution network to adjust the resonant frequency of the tunable clock distribution system.
摘要:
A method for programming a semiconductor element in a semiconductor structure such as an IC involves reducing the backside thickness of the substrate and directing an energy beam through the backside at an opaque component of the semiconductor element. A support structure mounted on the semiconductor structure provides support during and after the thinning operation. Alternatively, the substrate can be thinned only under the semiconductor element, leaving the rest of the substrate thick enough to maintain structural integrity. The energy beam heats the opaque component. The prior thinning operation minimizes heat dissipation away from the semiconductor element, so that dopant diffusion occurs, changing the electrical characteristics of the semiconductor element. By modifying selected elements in this manner, a semiconductor structure can be permanently programmed, even if it does not include non-volatile memory. Additionally, security is enhanced since the programming leaves no visible signs.
摘要:
A wafer of integrated circuits under test (ICUT) is tested by supplying power to the ICUTs using power and ground traces that extend between rows of the ICUTs in scribe streets. Test information is supplied to each ICUT by transmitting the test information optically onto the entire wafer. A diode on each ICUT receives the optical test information. The ICUT uses the test information to perform a self-test. Each ICUT has a diode for transmitting optical test information. All ICUTs on the wafer transmit results of the self-tests at the same time. A test device receives the optical test information and identifies the information from each of the many ICUTs, one from another. An entire wafer of ICUTs is therefore tested simultaneously without using a probe card either to power an ICUT or to supply test information to or receive test information from an ICUT.
摘要:
A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. A phase discriminator samples the output of the oscillator and accumulates data representing the signal propagation delay of either rising or falling signal transitions propagating through the test circuit. The worst-case delay associated with the test circuit can then be expressed as the longer of the two. Knowing the precise worst-case delay allows IC A designers to minimize the guard band and consequently guarantee higher speed performance.
摘要:
A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. A phase discriminator samples the output of the oscillator and accumulates data representing the signal propagation delay of either rising or falling signal transitions propagating through the test circuit. The worst-case delay associated with the test circuit can then be expressed as the longer of the two. Knowing the precise worst-case delay allows IC designers to minimize the guard band and consequently guarantee higher speed performance.
摘要:
The maximum propagation speed of an electrical signal travelling on a conductor in an integrated circuit is limited by the dielectric constant of the dielectric material surrounding the conductor. Rather than transmitting an electrical signal through a conductor that is surrounded with a dielectric material having a dielectric constant of two or more, the signal is propagated as an electromagnetic wave through air at a much higher speed across the surface of the integrated circuit. In one embodiment, a radio frequency (RF) signal is passed into an integrated circuit package via a transmission line. The transmission line supplies the RF signal to a waveguide-like structure disposed above the integrated circuit inside the package. The RF signal propagates as an electromagnetic wave through air in the waveguide structure across the upper surface of the integrated circuit. Antenna/receiver circuit pairs are disposed at various locations across the surface of the integrated circuit where the signal is to be received and used. Other methods and embodiments are disclosed.
摘要:
A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. These signal transitions are counted over a predetermined time period to establish the average period of the oscillator. Finally, the average period of the oscillator is related to the average signal propagation delay through the test circuit. A phase discriminator samples the output of the oscillator and accumulates data representing the duty cycle of that signal. The duty cycle can then be combined with the average period of the test signal to determine, separately, the delays associated with falling and rising edges propagating through the test circuit.
摘要:
Described is a user-controlled, variable-delay interconnect structure for a programmable logic device (PLD), and a method for using this structure. In accordance with the invention, the signal propagation delays for selected signal paths can be precisely adjusted either while the PLD is being programmed or while the PLD is operating as a logic device. The delays are adjusted by selectively connecting otherwise unused interconnect lines to the signal path to increase the capacitive load on the interconnect lines that define the signal path. The ability to control the load on selected signal paths advantageously enables a user to precisely match the signal propagation delays of two or more signal paths. In one embodiment, the loads of selected signal paths can be modified while the FPGA is operational.