Abstract:
The present invention relates to a method of providing, by a UE served in a small-scale cell, information about surrounding UEs in a wireless communication system in which a macro cell and the small-scale cell coexist. The method can include the steps of: carrying out a handover from the macro cell to the small-scale cell; after completion of the handover, overhearing a signal transmitted by the UE; measuring signal intensities of the surrounding UEs; and, if the signal intensities meet predefined conditions, delivering information about the surrounding UEs to the small-scale cell.
Abstract:
One disclosure of the present specification provides a method for performing a measurement. The method may comprise: receiving, from a serving cell, a first measurement subframe pattern for the serving cell and assistance information on a cell-specific reference signal (CRS) of a first neighboring cell and a second neighboring cell; and receiving, from the serving cell, a second measurement subframe pattern for the first and second neighboring cells. Here, both the serving cell and the first neighboring cell are aggressor cells against a victim cell which is the second neighboring cell, and the received second measurement subframe pattern may be set based on an almost blank subframe (ABS) pattern, when a CRS of the serving cell collides with the CRS of the second neighboring cell but the CRS of the first neighboring cell does not collide with the CRS of the second neighboring cell.
Abstract:
The present invention relates to a method and terminal for detecting a physical hybrid-ARQ indicator channel (PHICH) in a wireless access system that supports enhanced inter-cell interference coordination. In particular, the method includes: determining whether the PHICH exists in only a 0th orthogonal frequency division multiplexing (OFDM) symbol if a subframe transmitted by a neighboring base station is an almost blanked subframe (ABS); determining whether a common reference signal (CRS) of the neighboring base station collides with a CRS of a serving base station if the PHICH exists outside of the 0th OFDM symbol; determining whether CRS power of the neighboring base station does not collide with the CRS of the serving base station; and determining whether an acknowledgement/negative-acknowledgement (ACK/Negative-ACK) is detected by replacing a symbol of the PHICH, overlapped with the CRS power of the neighboring base station is greater than the preset threshold.
Abstract:
A method, performed by a user equipment (UE), is provided for determining uplink transmission power. A radio frequency (RF) unit is configured to use for an uplink transmission a frequency range of 1980 MHz through 2010 MHz or 1920 MHz through 2010 MHz. The UE receives a value of an additional maximum power reduction (A-MPR) from a serving base station (BS) adjacent to a neighboring BS for serving another UE using for an uplink transmission a frequency range of 2010 MHz through 2025 MHz. An uplink signal is transmitted at an uplink transmission power calculated by using the value of the A-MPR. The value of the A-MPR is 11 dB or 15 dB.
Abstract:
The present invention relates to a method by which a terminal measures interference in a wireless communication system in which a macro cell and a small-scale cell coexist. The interference measurement method can include a step in which a terminal receives setting information for interference measurement (IM). Here, the setting information for the IM includes at least two settings, each setting is defined in a resource element (RE) unit, the first of the two settings is for measuring interference from other neighboring cells besides the macro and small-scale cells, and the second is for measuring interference from the macro cell. The interference measurement method may further include: measuring interference by using setting information for the IM; and feeding back channel quality obtained by using the measured interference value.
Abstract:
One disclosure of the present specification provides a method for performing a measurement. The method may comprise: receiving, from a serving cell, a first measurement subframe pattern for the serving cell and assistance information on a cell-specific reference signal (CRS) of a first neighboring cell and a second neighboring cell; and receiving, from the serving cell, a second measurement subframe pattern for the first and second neighboring cells. Here, both the serving cell and the first neighboring cell are aggressor cells against a victim cell which is the second neighboring cell, and the received second measurement subframe pattern may be set based on an almost blank subframe (ABS) pattern, when a CRS of the serving cell collides with the CRS of the second neighboring cell but the CRS of the first neighboring cell does not collide with the CRS of the second neighboring cell.
Abstract:
Disclosed in the present invention are a method for estimating a channel in a wireless access system in which a macro cell and a pico cell coexist, and an apparatus for same. More specifically, the present invention comprises the steps of: determining whether a cell-specific reference signal (CRS) that is inserted into a subframe of a pico cell, which corresponds to a multicast broadcast signal frequency network (MBSFN) almost blank subframe (ABS), overlaps with a CRS that is inserted into an MBSFN ABS of the macro cell, when the MBSFN ABS is transmitted from the macro cell; estimating the channel by using a CRS from the pico cell that remains after excluding the CRS that overlaps with the CRS of the macro cell; and decoding the channel which is received from the subframe of the pico cell by using a channel estimation value.
Abstract:
The present disclosure provides a method of performing up-link transmission at a reduced power. According to the method, system information may be received from a base station. The system information may include one or more of first information on an operating band and second information on an up-link bandwidth. Also, according to the method, a network signal for an additional power reduction may be received from the base station. Also, according to the method, when an operating band indicated by the first information is within a range of 777 MHz to 787 MHz and a bandwidth indicated by the second information is 5 MHz, namely, 777 MHz to 782 MHz, an additionally required power reduction may be determined in order to decrease interference to the band of an adjacently located public safety network according to the network signal, and up-link transmission at the reduced power may be performed.
Abstract:
The present invention discloses a method and device for controlling uplink transmit power of a terminal in a wireless access system that supports carrier aggregation/multiple cells. In particular, the method may include receiving a first TA value and a second TA value for a first timing advance group (TAG) including one or more component carriers and a second TAG including one or more component carriers, adjusting uplink transmission timing of the first TAG and the second TAG by using the first TA value and the second TA value, resetting a transient period between a first group of component carriers and a second group of component carriers exceeds a power control requirement, and controlling uplink transmit power according to the reset transient period.
Abstract:
The present invention relates to a method and terminal for detecting a physical hybrid-ARQ indicator channel (PHICH) in a wireless access system that supports enhanced inter-cell interference coordination. In particular, the method includes: determining whether the PHICH exists in only a 0th orthogonal frequency division multiplexing (OFDM) symbol if a subframe transmitted by a neighboring base station is an almost blanked subframe (ABS); determining whether a common reference signal (CRS) of the neighboring base station collides with a CRS of a serving base station if the PHICH exists outside of the 0th OFDM symbol; determining whether CRS power of the neighboring base station does not collide with the CRS of the serving base station; and determining whether an acknowledgement/negative-acknowledgement (ACK/Negative-ACK) is detected by replacing a symbol of the PHICH, overlapped with the CRS power of the neighboring base station is greater than the preset threshold.