摘要:
An electrochromic mirror is disclosed for use in a vehicle rearview mirror assembly having a light source positioned behind the electrochromic mirror for selectively projecting light through the mirror. The electrochromic mirror includes front and rear spaced elements each having front and rear surfaces and being sealably bonded together in a spaced-apart relationship to define a chamber, a layer of transparent conductive material disposed on the rear surface of the front element, at least one solution-phase electrochromic material contained within the chamber, and a second electrode overlying the front surface of the rear element in contact with the electrochromic material. The second electrode includes a layer of reflective material and a coating of electrically conductive material that is at least partially transmissive and is disposed over substantially all of the front surface of the rear element. The second electrode further includes a region in front of the light source that is at least partially transmissive. The electrically conductive coating may include a single transparent layer or a plurality of partially reflective and transmissive layers, or an electrically conductive dichroic coating. The light source may be an information display, such as a compass/temperature display as used in an inside rearview mirror, or may be a signal light as used in an outside rearview mirror.
摘要:
A rearview mirror assembly is disclosed including a housing adapted to be mounted to the vehicle, a mirror disposed in the housing, at least one electrically powered device disposed in the housing, and a power supply for receiving power from a vehicle power source having a voltage in excess of about 24 V and for supplying power at a voltage of about 5 V or less to the electrically powered device. The electrically powered device and the power supply exhibit an electromagnetic interference level of less than about 41 dB&mgr;V/m for emissions in the frequency range from about 0.4 MHz to about 20 MHz. The mirror is preferably an electrochromic mirror, and the electrically powered device may be a control circuit for the electrochromic mirror.
摘要:
A system for automatically controlling vehicle equipment includes a controller to generate control signals. The control signals are derived based on information obtained from the image sensor as well as other detected parameters pertaining to the detected light source(s), the vehicle having the inventive control system, and the ambient environment. The control circuit may simply turn certain vehicle equipment, for example exterior lights, on or off, or change the brightness, aim, focus, etc. to produce various beam patterns that maximize the illuminated area in front of the vehicle without causing excessive glare in the eyes of other drivers.
摘要:
The present invention relates to various optical elements, related manufacturing methods and systems incorporating the optical elements. In at least one embodiment an optical element is provided that improves a vision system's capability to accurately measure a spectral characteristic of a distant light source.
摘要:
A traffic system for alerting a driver of a vehicle to a traffic sign includes a sensor and a control unit. The sensor may be an image sensor and the control unit may comprise a graphic processing unit (GPU) to detect the optical flow of objects in the captured images so as to distinguish moving vehicles from non-moving objects. The speed of vehicles may be detected such that the system may (1) activate lights to warn a driver if he is traveling too fast or (2) display the speed to either the driver or a police officer. The system may also be implemented and used as a geographic border monitoring system.
摘要:
The inventive electrochromic mirror may be used in a vehicle rearview mirror assembly having a light source positioned behind the electrochromic mirror for selectively projecting light through the mirror and/or a light sensor positioned behind the electrochromic mirror for selectively receiving light through the mirror. The electrochromic mirror includes front and rear spaced elements each having front and rear surfaces and being sealably bonded together in a spaced-apart relationship to define a chamber, a layer of transparent conductive material disposed on the rear surface of the front element, an electrochromic material is contained within the chamber, and a second electrode overlies the front surface of the rear element in contact with the electrochromic material. The second electrode includes a layer of reflective material and a partially transmissive coating of and is disposed over substantially all of the front surface of the rear element. The second electrode further includes a region in front of the light source and/or light sensor that is at least partially transmissive.
摘要:
The inventive electrochromic mirror may be used in a vehicle rearview mirror assembly having a light source positioned behind the electrochromic mirror for selectively projecting light through the mirror and/or a light sensor positioned behind the electrochromic mirror for selectively receiving light through the mirror. The electrochromic mirror includes front and rear spaced elements each having front and rear surfaces and being sealably bonded together in a spaced-apart relationship to define a chamber, a layer of transparent conductive material disposed on the rear surface of the front element, an electrochromic material is contained within the chamber, and a second electrode overlies the front surface of the rear element in contact with the electrochromic material. The second electrode includes a layer of reflective material and a partially transmissive coating of and is disposed over substantially all of the front surface of the rear element. The second electrode further includes a region in front of the light source and/or light sensor that is at least partially transmissive.
摘要:
A control system is disclosed for controlling an image array sensor and controlling communication between the image array sensor and a microcontroller by way of a serial communication interface. The control system is able to efficiently control various aspects of the image array sensor such as windowing, mode of operation, sensitivity as well as other parameters in order to reduce the data throughput. An important aspect of the invention relates to the fact that the control circuit can be rather easily and efficiently configured in CMOS with relatively few output pins which enables the control circuit to be rather easily and efficiently integrated with CMOS based image array sensors and even the microcontroller to reduce the part count and thus, the overall cost of the system.
摘要:
An image sensor may be constructed as an imager die onto which is adhered an optical spacer. The imager die and optical spacer may be supported by a dam-and-fill construction which allows light to pass through the optical spacer and onto the imager die. The image sensor may generate control signals for use in a variety of automatic vehicle equipment controls and may be incorporated into an automotive vehicle such as by inclusion into a rearview mirror assembly.
摘要:
An imaging system for use in a vehicle headlamp control system includes an opening, an image sensor, a red lens blocking red complement light between the opening and the image sensor, and a red complement lens blocking red light between the opening and the image sensor. Each lens focuses light onto a different subwindow of the image sensor. The imaging system allows processing and control logic to detect the presence of headlamps on oncoming vehicles and tail lights on vehicles approached from the rear for the purpose of controlling headlamps. A light sampling lens may be used to redirect light rays from an arc spanning above the vehicle to in front of the vehicle into substantially horizontal rays. The light sampling lens is imaged by the image sensor to produce an indication of light intensity at various elevations. The processing and control logic uses the light intensity to determine whether headlamps should be turned on or off. A shutter may be used to protect elements of the imaging system from excessive light exposure.