摘要:
A method for transmitting system information bit streams of one or more base stations in a wireless communication system is provided. The method includes: identifying network-entry-related bit streams and non-network-entry-related bit streams from the system information bit streams, where the network-entry-related bit streams carry essential system information for a terminal to access a network through at least one of the base stations; modulating the network-entry-related bit streams according to a first set of modulation and coding schemes (MCSs) and modulating the non-network-entry-related bit streams according to a second set of MCSs; and transmitting the system information bit streams with different frequencies, where the network-entry-related bit streams are periodically transmitted according to a first predetermined period.
摘要:
A method of establishing a sleep mode operation between a mobile station and its serving base station is provided in a wireless communications system. When sleep mode operation is active, the MS enters into a series of sleep cycle and each sleep cycle comprises a listening window followed by a sleep window. In one novel aspect, each sleep cycle is associated with a set of sleep cycle parameters including a Sleep Cycle Length and an adjustable Listening Window Length. Each set of sleep cycle parameters is determined based on a predefined traffic characteristic of a data communication flow between the MS and it serving BS. Different embodiments of sleep cycle parameters are provided for real-time traffic, non-real-time traffic, real-time and non-real-time mixed traffic, and multi-rate transmission traffic. By using sleep cycle-based parameters, the efficiency of sleep mode operation is improved.
摘要:
In a Hybrid Automatic Repeat ReQuest (HARQ) communication system, a receiver receives from a transmitter a HARQ sub-burst. A retransmission counter (RE_TX_CNT) in the receiver is incremented if either: (i) the receiver cannot decode the sub-burst, or (ii) no retransmission of the sub-burst is received within a Predetermined Retransmission Delay (PRD) interval. If RE_TX_CNT reaches a Maximal Retransmission Count (MAX_RE_CNT), then information for the sub-burst that was previously stored for HARQ purposes in a soft combining buffer in the receiver is flushed. Parameters that set the PRD interval and the MAX_RE_CNT value are pre-negotiated between the transmitter and the receiver. In another embodiment, if a novel timer in the receiver indicates that a first threshold time has elapsed after receipt of an undecodable HARQ transmission then buffered information is marked, whereas if the timer indicates that a second threshold time has elapsed then the marked information is flushed.
摘要:
Various methods for wireless communication in a device with co-existed/co-located radios are provided. Multiple communication radio transceivers are co-existed/co-located in a user equipment (UE) having in-device coexistence (IDC) capability, which may result in IDC interference. For example, the UE is equipped with both LTE radio and some ISM band applications such as WiFi and Bluetooth modules. In a first method, the network identifies IDC capability by UE identification (e.g., UE ID). In a second method, the UE intentionally performs cell selection or reselection to cells in non-ISM frequency bands. In a third method, the UE signals the existence of ISM band applications via capability negotiation. In a fourth method, the UE signals the activation of ISM band applications by signaling messages (e.g., RRC message or MAC CE). Under the various methods, the UE and its serving eNB can apply FDM or TDM solutions to mitigate the IDC interference.
摘要:
Methods for a mobile station to handover between IEEE 802.16e and 802.16m systems are provided. The mobile station is served by an IEEE 802.16e-only base station or an IEEE 802.16e zone of a 16e/16m-conexistence base station. In a zone-switch based handover procedure, the mobile station first performs an IEEE 802.16e legacy handover procedure such that the mobile station handovers from the serving base station to an IEEE 802.16e zone of a target base station. The mobile station then performs a zone-switch procedure such that the mobile station switches from the IEEE 802.16e zone to an IEEE 802.16m zone of the target base station. In a direct handover procedure, the mobile station performs an IEEE 802.16m handover procedure such that the mobile station handovers from the serving base station to the IEEE 802.16m zone of the target base station directly.
摘要:
A contention-based multi-antenna access request transmission/receiving procedure in MIMO OFDM/OFDMA systems is provided to reduce access latency. A mobile station encodes and transmits an access request over a shared access channel using multiple transmitting antennas, while a base station receives and decodes a number of access requests using multiple receiving antennas. Each access request comprises an access indictor and an access message. In a first MIMO scheme, the mobile station transmits the access indicator as preambles, while the access message is encoded by SFBC/STBC to obtain spatial diversity. At the receive side, the access indicator is exploited as pilots for channel estimation. The access message is decoded using SFBC/STBC decoding algorithm. In a second MIMO scheme, the mobile station performs precoding/beamforming for each of the transmitting antenna to obtain beamforming gain, while the base station performs virtual beam matching based on the detection results of the access indicators.
摘要:
A method of uplink power control in a wireless OFDMA system is provided. A serving base station first configures a fast feedback channel by transmitting a feedback allocation message to a mobile station. The mobile station then reports downlink channel information via the allocated fast feedback channel. Based on the reported downlink channel information, the serving base station estimates uplink channel quality and thereby detects a channel variation and generates an uplink power adjustment message that delivers a power offset to adjust the transmitting power level of the mobile station. In one novel aspect, the uplink power adjustment message also comprises feedback allocation information that re-configures the fast feedback channel without extra signaling overhead. In addition, the novel power adjustment message eliminates redundant information such that it is transmitted via a minimum resource unit without requiring extra resource.
摘要:
A method of power management for a mobile station in a multi-carrier wireless network is provided. A primary connection between the mobile station and a serving base station is first established by performing initial ranging over a primary radio frequency (RF) carrier. A secondary connection between the mobile station and the base station is then established by performing periodic ranging over a secondary RF carrier. To achieve efficient power management, the mobile station performs Open Loop Power Control and obtains long-term link measurement (CSI) of the primary carrier. The mobile station then adjusts carrier-specific parameters based on the primary carrier CSI. For RF carriers that convey on-going data traffic, Close Loop Power Control is updated per RF carrier. When the mobile station enters sleep mode operation, it receives traffic indication messages on the primary RF carrier and then dynamically wakes up one or more corresponding RF carriers for data reception.
摘要:
A method of providing Local IP Access (LIPA) indication is proposed. In one novel aspect, an enhanced cell selection method is proposed using LIPA capability information. Based on LIPA capability related information, a UE is able to prioritize LIPA-capable cells and establish a corresponding packet data network (PDN) connection accordingly. In a first embodiment, LIPA information is statically configured in the UE. In a second embodiment, LIPA information is informed to the UE via broadcasting or unicasting Radio Resource Control (RRC) signaling.
摘要:
A unified synchronous ranging channel is provided. The unified synchronous ranging channel has a ranging cyclic prefix length that is the same as a cyclic prefix length of a data channel. The unified synchronous ranging channel is used for one of initial ranging, handover ranging, and periodic ranging between a mobile station and a femto base station. In one embodiment, the synchronous ranging channel spans over a two-dimensional radio resource region having a first number of subcarriers along frequency domain, a second number of OFDM symbols along time domain, and a third number of time-domain repetition. At the transmit side, a ranging code sequence is generated by applying a fixed time-domain cyclic shift per OFDM symbol to a root sequence. At the receive side, the ranging code sequence is decoded by using a summation module, a likelihood-combining module, and a modified peak test module that normalizes a peak value.