Abstract:
Techniques for transmitting data with persistent interference mitigation in a wireless communication system are described. A station (e.g., a base station or a terminal) may observe high interference and may send a request to reduce interference to interfering stations. The request may be valid for a time period covering multiple response periods. Each interfering station may grant or dismiss the request in each response period, may dismiss the request by transmitting at full power, and may grant the request by transmitting at lower than full power. The station may receive a response from each interfering station indicating grant or dismissal of the request by that interfering station in each response period. The station may estimate SINR based on the response received from each interfering station and may exchange data with another station based on the estimated SINR. Persistent interference mitigation may reduce signaling overhead and improve resource utilization and performance.
Abstract:
A method and apparatus are provided to manage the assignment transmission resource of forward and reserve link that is assigned to transmitting entity for a period of time. An indication of a gap is provided whenever the transmitting entity is not transmitting actual data packets (e.g. whole or part of intended data or content), yet the transmitting entity is to maintain the assignment of the allocated resource. For example, an erasure signature packet comprising a first data pattern is transmitted on the assigned resource when there is no actual data to transmit on the assigned resource.
Abstract:
Systems and methodologies are described that facilitate transmitting access point types and/or restricted association parameters using broadcast signals, such as beacons, pilot signals, etc. The type or restricted association information can be indicated by one or more intrinsic aspects of the signal, such as specified parameters. In addition, the type or information can be indicated by one or more extrinsic signal aspects, such as frequency, interval, periodicity, etc. Using this information, a mobile device can determine whether an access point implements restricted association. If so, the mobile device can request an access point or related group identifier before determining whether to establish connection therewith. The identifier can be verified against a list of accessible access points and/or groups to make the determination.
Abstract:
A base station may perform interleaving of parts of a plurality of transport blocks for a broadcast or multicast transmission across a plurality of time intervals. A size of a transport block of the plurality of transport blocks may be scaled by a scaling factor. The base station may transmit the interleaved parts in the plurality of time intervals.
Abstract:
Methods, systems, and devices for wireless communications are described. In one example, a method for wireless communications at a user equipment (UE) includes determining one or more performance metrics related to communications over a wireless channel and comparing the one or more performance metrics with a performance level for the communications over the wireless channel. The method may include selecting a power mode for the UE based at least in part on the comparing and determining an operating state of a subset of a plurality of radio frequency front end elements of at least one active radio frequency chain of the UE based at least in part on the power mode and a priority of the one or more performance metrics. The method may also include adjusting the subset of the plurality of radio frequency front end elements based at least in part on the operating state.
Abstract:
Methods, systems, and devices for wireless communications are described that provide for antenna selection at a user equipment (UE). The UE may have a set of available antennas for uplink and downlink communications, and may select a first subset of antennas for uplink communications and a second subset of antennas for downlink communications. The first subset of antennas may be based on one or more uplink metrics, and the second subset of antennas may be based on the first subset of antennas and one or more downlink channel metrics, traffic amounts, or any combinations thereof.
Abstract:
The techniques described herein may provide for sub-slot based physical uplink shared channel (PUSCH) repetition (i.e., back-to-back PUSCH repetition within a slot) according to user equipment (UE) capability. A UE may employ uplink data repetition capability reporting for base station scheduling of uplink data repetition and base station management of the number of transport blocks (TBs) that a UE supports (e.g., processes and transmits for uplink) on a per-slot basis. According to the techniques described herein, a UE may indicate whether it supports mini-slot repetition (e.g., for ultra-reliable low-latency communication (URLLC), enhanced mobile broadband (eMBB), or both) via an uplink data repetition capability report. The uplink data repetition capability report may further indicate a maximum number of supported repetitions per TB, a number of supported TBs per slot, etc., such that a base station may configure or schedule PUSCH repetition based on the UE's reported capability.
Abstract:
This disclosure provides systems, methods and apparatus where a user equipment (UE) may indicate different physical downlink control channel (PDCCH) monitoring capabilities (such as UE capabilities in terms of the number of control channel elements (CCEs), blind decodes (BDs), number of downlink control information (DCI) formats, etc.) per monitoring span or slot. For example, a UE may support a different number of CCEs per slot or a different number of DCIs per monitoring span for different service types (such as a different number of CCEs for enhanced mobile broadband (eMBB) and for ultra-reliable low latency communications (URLLC)). A UE may indicate different sets of PDCCH monitoring capabilities (such as sets of PDCCH monitoring capabilities for different service types, monitoring spans, slots, etc.). A base station may receive the indication of UE PDCCH monitoring capability information and may configure the UE with one or more monitoring occasions accordingly.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive an indication of at least one of a first interleaving mode for mapping codeblocks to a data channel or a second interleaving mode for reporting channel state information (CSI). The UE may map codeblocks to the data channel based at least in part on the first interleaving mode. The UE may report CSI based at least in part on the second interleaving mode. Numerous other aspects are provided.
Abstract:
Wireless communications systems and methods related to an uplink transmission cancellation mechanism that determines processing time for UEs configured with mixed processing capabilities are described. Specifically, methods and systems are provided for a UE to determine which processing capability to rely on to determine the minimum processing time for cancellation. For example, when a UE is configured with a faster processing capability and a slower processing capability, the UE may be configured to always rely on the faster, or the slower processing capability. Alternatively, the UE may be configured to consider factors such as the uplink channel type, uplink channel priority, the cause of the cancellation, the priority of uplink grant, or any combination thereof, to determine whether to rely on the faster or the slower capability to obtain the minimum processing time for cancellation.