Abstract:
RF multiplexer circuitry includes a first signal path coupled between a first intermediate node and a common node, a second signal path coupled between a second intermediate node and the common node, first resonator circuitry coupled between the first signal path and ground, and second resonator circuitry coupled between the second signal path and ground. The first resonator circuitry is configured to allow signals within a first frequency pass band to pass between the first intermediate node and the common node, while attenuating signals outside of the first frequency pass band. The first resonator circuitry includes a first LC resonator. The second resonator circuitry is configured to allow signals within a second frequency pass band to pass between the second intermediate node and the common node, while attenuating signals outside of the second frequency pass band.
Abstract:
Embodiments of radio frequency (RF) filtering circuitry are disclosed. In one embodiment, the RF filtering circuitry includes a first port, a second port, a first RF filter path, and a second RF filter path. The first RF filter path is connected between the first port and the second port and includes at least a pair of weakly coupled resonators. The weakly coupled resonators are configured such that a first transfer response between the first port and the second port defines a first passband. The second RF filter path is coupled to the first RF filter path and is configured such that the first transfer response between the first port and the second port defines a stopband adjacent to the first passband without substantially increasing ripple variation of the first passband defined by the first transfer response.
Abstract:
An RF ladder filter having a parallel capacitance compensation circuit is disclosed. The parallel capacitance compensation circuit is made up of a first inductive element with a first T-terminal and a first end coupled to a first ladder terminal and a second inductive element with a second T-terminal that is coupled to the first T-terminal of the first inductive element and a second end coupled to a second ladder terminal. Further included is a compensating acoustic RF resonator (ARFR) having a fixed node terminal and a third T-terminal that is coupled to the first T-terminal of the first inductive element and the second T-terminal of the second inductive element, and a finite number of series-coupled ladder ARFRs, wherein the parallel capacitance compensation circuit is coupled across one of the finite number of series-coupled ARFRs by way of the first ladder terminal and the second ladder terminal.
Abstract:
Multiplexing circuitry is disclosed that includes filtering circuitry, which provides a first transfer function between a common port and a first port and a second transfer function between the common port and a second port. The first transfer function and second transfer function provide a first passband and a second passband, respectively. The first transfer function also has a stopband provided within the second passband of the second transfer function because the filtering circuitry includes a first filter path and a second filter path, wherein the second filter path has a first and second parallel resonant circuit provided in shunt with respect to the second filter path and weakly coupled to one another. The weak coupling between the first parallel resonant circuit and the second parallel resonant circuit naturally provides the stopband in the first transfer function within the second passband of the second transfer function.
Abstract:
The present disclosure relates to coupled slow-wave transmission lines. In this regard, a transmission line structure is provided. The transmission line structure includes a first undulating signal path formed from first loop structures. The transmission line structure also includes a second undulating signal path formed from second loop structures. The second undulating signal path is disposed alongside of the first undulating signal path. Further, a first ground structure is disposed above or below either one or both of the first undulating signal path and the second undulating signal path.
Abstract:
A tunable diplexer includes a high pass filter, a low pass filter, a high band port, a low band port, and an antenna port. The high pass filter is adapted to pass high band signals falling within a high pass band between the high band port and the antenna port, while attenuating signals outside of the high pass band. The low pass filter is adapted to pass low band signals falling within a low pass band between the low band port and the antenna port, while attenuating signals outside of the low pass band. The low pass filter includes a low stop band zero, which is adapted to attenuate signals within a low stop band. The low stop band zero is tunable, such that the low stop band can be adjusted to selectively attenuate signals within a given frequency band in the low pass band.
Abstract:
A reconfigurable RF receive diplexer, which includes a first hybrid RF coupler, a second hybrid RF coupler, and reconfigurable RF filter circuitry, is disclosed. The reconfigurable RF receive diplexer receives a first adjunct RF antenna receive signal via a first isolation port to provide a first adjunct RF receive signal via a second main port. The reconfigurable RF receive diplexer further receives a first RF transmit signal via a first main port to provide a first RF antenna transmit signal via the first isolation port. The reconfigurable RF receive diplexer operates in each of a group of operating modes, such that during a first operating mode, a carrier frequency of the first adjunct RF antenna receive signal is within a first RF communications band; and during a second operating mode, a carrier frequency of the first adjunct RF antenna receive signal is within a second RF communications band.
Abstract:
This disclosure relates to hybrid couplers for radio frequency (RF) signals. The hybrid coupler includes a first port, a second port, a third port, a fourth port, a first inductive element connected from the first port to the third port, and a second inductive element connected from the second port to the fourth port. The hybrid coupler further includes a first capacitive element and a second capacitive element. The first capacitive element is connected between an intermediary node of the first inductive element and either the first port or the third port, while the second capacitive element is coupled between an intermediary node of the second inductive element and either the second port or the fourth port. Accordingly, the first capacitive element and a portion of the first inductive element and the second capacitive element and a portion of the second capacitive element each form a harmonic trap.
Abstract:
A first RF receive diplexer, which includes a first hybrid RF coupler, a second hybrid RF coupler, and RF filter circuitry, is disclosed. The first hybrid RF coupler has a first main port, a first pair of quadrature ports, and a first isolation port, which is coupled to an RF antenna. The second hybrid RF coupler has a second main port and a second pair of quadrature ports. The RF filter circuitry is coupled between the first pair of quadrature ports and the second pair of quadrature ports. The first RF receive diplexer receives a first adjunct RF antenna receive signal via the first isolation port to provide a first adjunct RF receive signal via the second main port. The first RF receive diplexer receives a first RF transmit signal via the first main port to provide a first RF antenna transmit signal via the first isolation port.
Abstract:
Radio frequency (RF) front end circuitry includes a notch diplexer. The notch diplexer includes a high pass filter coupled between a high band port and an antenna port, and a low pass notch filter coupled between a low band port and the antenna port. The high pass filter is adapted to receive a high band receive signal having a high band carrier frequency at the antenna port, and pass the high band receive signal to the high band port. The low pass notch filter is adapted to receive a low band transmit signal having a low band carrier frequency at the low band port, and attenuate distortion in the low band transmit signal about a notch stop band before passing the low band transmit signal to the antenna port. According to one embodiment, the notch stop band includes the high band carrier frequency.