摘要:
Methods for improving uplink communications in a Wideband Code Division Multiple Access (WCDMA) communication system, wherein mobile terminals can transmit at various transmission power levels. In a mobile terminal, the method includes the steps of receiving a configuration message having at least one of a power offset parameter and a maximum number of retransmission attempts parameter; when the mobile terminal performs a non-scheduled transmission, it transmits according to the parameters contained in the configuration message. In a network node, the method includes the steps of transmitting to at least one mobile terminal the configuration message having at least one of a power offset parameter and a maximum number of retransmission attempts parameter; and, adjusting a power setting for the transmission of acknowledgement or negative-acknowledgement messages from the wireless network to one or more of mobile terminals.
摘要:
A system, method and node for modulation and coding scheme adjustment for a Long Term Evolution (LTE) shared Data Channel. The method determines an actual number of orthogonal frequency division multiplexing (OFDM) symbols, NOS utilized for the shared Data Channel. A modulation order for transmission of data on the shared Data Channel is increased when the actual number of OFDM symbols NOS is less than 11 and decreased when NOS is more than 11. A modulation and coding scheme field (IMCS) of a downlink control information of the shared Data Channel may also be determined. If 0≦IMCS+11−NOS≦28, the modulation order is modified by utilizing a factor of (IMCS+11−NOS) in a standardized modulation scheme. If it is determined that IMCS+11−NOS 28, the modulation order is set to 64 Quadtrative Amplitude Modulation (64QAM).
摘要:
A wireless communication receiver improves signal impairment correlation estimation in MIMO/MISO systems by considering different transmit power allocations and different transmit antenna power distributions in its impairment correlation calculations. The receiver may be implemented in according to a variety of architectures, including, but not limited to, Successive Interference Cancellation (SIC) Generalized RAKE (G-RAKE), Joint Detection (JD) G-RAKE, and Minimum Mean Squared Error (MMSE) G-RAKE. Regardless of the particular receiver architecture adopted, the improved impairment correlations may be used to calculate improved (RAKE) signal combining weights and/or improve channel quality estimates for reporting by receivers operating in Wideband CDMA (W-CDMA) systems transmitting HSDPA channels via MIMO or MISO transmitters. A transmitter may be configured to facilitate impairment correlation determinations by wireless communication receivers operating in MIMO/MISO environments, by signaling one or more values, e.g., data-to-pilot signal transmit power ratios and/or transmit antenna power distributions for the data and pilot signals.
摘要:
The required bitrate for reporting channel state information from a network transceiver to the network is dramatically reduced, while maintaining fidelity of channel estimates, by exploiting prior channel estimates and the time correlation of channel response. For a selected set of sub-carriers, the transceiver estimates channel frequency response from pilot signals. The transceiver also predicts the frequency response for each selected sub-carrier, by multiplying a state vector comprising prior frequency response estimate and a coefficient vector comprising linear predictive coefficients. The predicted frequency response is subtracted from the estimated frequency response, and the prediction error is quantized and transmitted to the network. The network maintains a corresponding state vector and predictive coefficient vector, and also predicts a frequency response for each selected sub-carrier. The received prediction error is inverse quantized and subtracted from the predicted frequency response to yield a frequency response corresponding to that estimated at the transceiver.
摘要:
A wireless communication receiver improves signal impairment correlation estimation in MIMO/MISO systems by considering different transmit power allocations and different transmit antenna power distributions in its impairment correlation calculations. The receiver may be implemented in according to a variety of architectures, including, but not limited to, Successive Interference Cancellation (SIC) Generalized RAKE (G-RAKE), Joint Detection (JD) G-RAKE, and Minimum Mean Squared Error (MMSE) G-RAKE. Regardless of the particular receiver architecture adopted, the improved impairment correlations may be used to calculate improved (RAKE) signal combining weights and/or improve channel quality estimates for reporting by receivers operating in Wideband CDMA (W-CDMA) systems transmitting HSDPA channels via MIMO or MISO transmitters. A transmitter may be configured to facilitate impairment correlation determinations by wireless communication receivers operating in MIMO/MISO environments, by signaling one or more values, e.g., data-to-pilot signal transmit power ratios and/or transmit antenna power distributions for the data and pilot signals.
摘要:
Channel Quality Indicator (CQI) tables are tailored to one or more cells of interest. Tailoring CQI tables to individual cells permits devices such as radio base stations to more reliably and accurately allocate radio resources to those cells since channel conditions vary from cell to cell. According to one embodiment, a table of CQI values is composed by analyzing information indicating channel quality in a cell of interest and generating at least one table of CQI values tailored to the cell of interest based on the information analyzed. The tailored CQI table may be deployed to another device for use in reporting channel quality information. The device may report channel quality by accessing the tailored CQI and identifying the range of CQI values that includes a channel quality estimate derived by the device. The device generates a channel quality information message based on the identified range of CQI values.
摘要:
Control channel information is formulated for transmission in orthogonal frequency division multiplexing (OFDM) systems. In an example embodiment, a method entails formulating control channel information for a transmitting device operating in an OFDM system in which a control channel spans n OFDM symbols, with n being an integer. The method includes acts of allocating, creating, and mapping. Control channel data is allocated to at least one set of resource element groups. At least one order for the set of resource element groups is created in accordance with one or more permutation mechanisms that involve at least one interleaving sequence having a low cross-correlation property. The set of resource element groups is mapped to resource elements of the n OFDM symbols of the control channel responsive to the order that is created using the permutation mechanism(s). The permutation mechanisms may include interleaving sequence(s) and/or cyclic shift(s).
摘要:
In one or more embodiments, a method of processing a soft value sequence according to an iterative soft-input-soft-output (SISO) algorithm comprises carrying out sliding-window processing of the soft value sequence in a first iteration using first window placements and in a second iteration using second window placements, and varying the window placements between the first and second iterations. In at least one embodiment, a communication receiver circuit is configured to carry out iterative SISO processing, wherein it processes a soft value sequence using sliding windows, and wherein it varies window placements between one or more iterations. The communication receiver circuit comprises, for example, all or part of a turbo decoding circuit or other type of iterative block decoding circuit, an equalization and decoding circuit, a soft demodulation and decoding circuit, a multi-user detection and decoding circuit, or a multiple-input-multiple-output detection and decoding circuit.
摘要:
A method and apparatus for providing adaptive cyclic redundancy check (CRC) computation is disclosed. A transport block size is determined. Transport block (TB) CRC bits are computed with a first CRC generator when the TB size is less than or equal to a predetermined threshold. TB CRC bits are computed with a second CRC generator when the transport block size is greater than the predetermined threshold. When the TB is greater than the predetermined threshold, the TB is segmented into code blocks (CBs) and CB CRC bits are computed with the first CRC generator. A method and apparatus for handling adaptively cyclic redundancy check (CRC) encoded transport blocks (TBs) is also disclosed. A TB is received. The TB is CRC checked based on a first CRC generator when the TB size is less than or equal to a predetermined threshold. Code blocks of the TB are CRC checked based on the first CRC generator when the TB size is greater than the predetermined threshold. When the TB size is greater than the predetermined threshold, the code blocks are concatenated, and the TB is CRC checked based on a second CRC generator.
摘要:
A transmitter, channel coder, and method for coding and transmitting a sequence of symbols in a digital communication system utilizing soft pilot symbols. In one embodiment, the transmitter transmits a set of soft pilot symbols with higher reliability than the remaining symbols in the sequence by modulating the soft pilot symbols with a lower order modulation such as BPSK or QPSK while modulating the remaining symbols with a higher order modulation such as 16 QAM or 64 QAM. The transmitter shares the modulation type and location (time/frequency/code) of the soft pilot symbols with a receiver. Unlike traditional fixed pilots, the soft pilots still carry some data. Additionally, the soft pilots are particularly helpful in establishing the amplitude reference essential in demodulating the higher order modulation symbols. In another embodiment, soft pilot symbols are inserted by low-level puncturing of channel encoded bits and replacing the punctured bits with known bit patterns.