摘要:
To scan an object with differently shaped cone beams (112, 122), the present invention provides a CT scanner with a moveable X-ray tube (the meaning of “move the x-ray tube among a plurality of predefined positions” also covers the situation that the anode disk is moved among a plurality of corresponding positions, while the shell of the x-ray tube does not move). The X-ray tube is not only moveable along the axial direction, but also along the radial direction of the CT scanner gantry. The scanner comprises an X-ray tube, which X-ray tube further comprises: an anode disk (100), comprising a plurality of focal tracks (110, 120) each focal track being cone-shaped with an anode angle (114, 124) different from the anode angle(s) of the other focal track(s); and a first cathode (210), configured to emanate an electron beam targeting at least one of the plurality of focal tracks. When different focal tracks are bombarded by electron beams, different X-ray beams (112, 122) with differently shaped cone beams are generated.
摘要:
A method includes generating simulated complete projection data based on acquisition projection data, which is incomplete projection data, and virtual projection data, which completes the incomplete projection data and reconstructing the simulated complete projection data to generate volumetric image data. An alternative method includes supplementing acquisition image data generated from incomplete projection data with supplemental data to expand a volume of a reconstructable field of view and employing an artifact correction to correct a correctable field of view based on the expanded reconstructable field of view.
摘要:
The invention relates to a medical X-ray examination apparatus (1) for performing K-edge imaging. The medical X-ray examination apparatus (1) comprises an imaging unit (21), which is configured to spectrally decompose an X-ray absorption spectrum to image the X-ray absorption spectrum as a conventional X-ray absorption image (23a) and a K-edge absorption image (23b). The conventional X-ray absorption image (23a) includes data elements representing the anatomical background of an object of interest. The K-edge absorption image (23b) includes data elements representing quantitative information of local densities of material showing K-edge absorption within the object of interest. The imaging unit (21) comprises a spatial resolution reducer for reducing the spatial resolution of the K-edge absorption image, so that with a medical X-ray examination apparatus according to the invention an increased sensitivity of the selective imaging of a K-edge absorption image is achieved as compared to the sensitivity of the selective imaging of a K-edge absorption image of a known medical X-ray examination apparatus.
摘要:
If, in cardiac CT, the time window becomes shorter than the time required for a complete rotation of the gantry, the volume that can be reconstructed becomes small due to the non-existence of related pi-lines. According to an exemplary embodiment of the present invention, an examination apparatus is provided which generates a radiation beam oscillating in z-direction with an oscillation frequency higher than the rotational frequency of the source. This may provide for an exact image reconstruction of large volumes.
摘要:
A computed tomography system includes at least two x-ray sources (108), a at least one common detector (124), and a reconstruction system (136). The at least two x-ray sources (108) are aligned at different z-axis locations at about a same angular position and concurrently emit radiation that traverses an imaging region (116). The at least one detector (124) detects radiation emitted by the at least two x-ray source (108) and generates composite data indicative of the detected radiation. The reconstruction system (136) reconstructs the composite data to generate one or more images.
摘要:
Cone-beam CT scanners with large detector arrays suffer from increased scatter radiation. This radiation may cause severe image artefacts. An examination apparatus is provided which directly measures the scatter radiation and uses this measurement for a correction of the contaminated image data. The measurement is performed by utilizing a 1-dimensional anti-scatter-grid and an X-ray tube with an electronic focal spot movement. Image data is detected at a first position of a focal spot and scatter data is detected at a second position of the focal spot. The image data is corrected on the basis of the scatter data.
摘要:
A short scan uses only data from about 180° gantry rotation instead of a full 360° turn. In the provided short scan cardiac CT, a periodical axial focal spot movement is performed during gantry rotation, wherein the acquired data used for image reconstruction results from a 180° rotation of the gantry. After the data acquisition, an approximate reconstruction is performed. In a preferred embodiment the focal spot moves on a short scan saddle trajectory.
摘要:
Photon counting detectors may suffer from pulse sharing effects and fluorescence photon generation, which may lead to a degradation of the measured signals. According to an exemplary embodiment of the present invention, a detector unit is provided which is adapted for performing a coincidence detection and correction by comparing detection events of neighbouring cells, thereby providing for a coincidence identification followed by an individual coincidence correction. In order to reduce the number of coincidence detection and corresponding units per detector unit, a specific detector cell geometry may be applied.
摘要:
Since the soft tissue levels in an image usually comprise a variety of values between air and bone boundaries, it may not be obvious a priori what threshold value applies. According to an exemplary embodiment of the present invention, an examination apparatus is provided which is adapted for determining the optimal weight for subtraction of a soft tissue correction image without performing a multitude of forward and backward projections. This may be provided determining a roughness function based on a plurality of subtractions of the soft tissue streak image, each subtraction corresponding to a different weighting of the streak image.
摘要:
The invention relates to an imaging method, especially a computerized tomography method, with which an object is penetrated by rays from different directions and measured values, which depend upon the intensity of the rays after penetrating the object, are acquired by a detector unit. From these measured values, an object image is reconstructed by means of back projection of measured-value-dependent back projection values. Therein, the object image is divided into overlapping, quasi-spherically symmetric image segments, each being defined by an image value and a quasi-spherically symmetric base function. Furthermore, during the back projection, the back projection values are added in proportions to the image values, wherein the proportion of a back projection value, which is added during the back projection to an image value, is dependent on a proportionality factor, which is equal to the average value of the line integrals of the base function belonging to the respective image value along those rays that have generated the measured value, on which the respective back projection value is dependent.