摘要:
A photovoltaic device including a rear electrode which may also function as a rear reflector. In certain example embodiments of this invention, the rear electrode includes a metallic based reflective film that is oxidation graded, so as to be more oxided closer to a rear substrate (e.g., glass substrate) supporting the electrode than at a location further from the rear substrate. In other words, the rear electrode is oxidation graded so as to be less oxided closer to a semiconductor absorber of the photovoltaic device than at a location further from the semiconductor absorber in certain example embodiments. In certain example embodiments, the interior surface of the rear substrate may optionally be textured so that the rear electrode deposited thereon is also textured so as to provide desirable electrical and reflective characteristics. In certain example embodiments, the rear electrode may be of or include Mo and/or MoOx, and may be sputter-deposited using a combination of MoOx and Mo sputtering targets.
摘要:
Glass is provided so as to have high visible transmission and/or fairly clear or neutral color. In certain example embodiments, the glass includes a low amount of iron coupled with erbium (Er, including an oxide thereof) designed to provide a neutral color and high transmittance. In certain example embodiments, the amount of SO3 in the glass composition is increased in order to provide increased visible transmission, without sacrificing neutral color. The glass may optionally include a small amount of cobalt (Co, including an oxide thereof) in certain example instances.
摘要:
Glass is provided so as to have high visible transmission and/or fairly clear or neutral color. In certain example embodiments, the clear glass includes a low amount of iron coupled with zinc oxide and/or erbium oxide in amounts designed to provide a neutral color. While the erbium oxide is used to provide for neutral color, the zinc oxide binds sulfur into whitish-colored zinc sulfide thereby reducing the amount of sulfur that binds/bonds with iron in the glass to form sulfides of iron which is/are brownish in color. Thus, the use of the zinc oxide helps make the glass more neutral in color. In certain example embodiments, the use of the erbium oxide brings the a* color value of the resulting glass closer to zero, whereas the use of the zinc oxide brings the b* value of the resulting glass closer to zero.
摘要:
A low-E coated article is provided, in certain example embodiments, with a layer including silicon oxynitride adjacent the glass substrate in order to improve chemical and/or mechanical durability of the coated article. In certain example embodiments, the coated article may be formed so as to have a fairly high visible transmission (TY or Tvis) to sheet resistance (Rs) ratio (i.e., a ratio Tvis/Rs). The higher this ratio, the better the coated article's combined functionality of providing for both good solar performance (e.g., ability to reflect and/or absorb IR radiation) and high visible transmission. Coated articles herein may be used in the context of insulating glass (IG) window units, architectural or residential monolithic window units, vehicle window units, and/or the like.
摘要:
A coated article is provided which may be heat treated (e.g., thermally tempered) in certain instances. In certain example embodiments, an interlayer of or including a metal oxide such as tin oxide is provided under an infrared (IR) reflecting layer so as to be located between respective layers comprising silicon nitride and zinc oxide. It has been found that the use of such a tin oxide inclusive interlayer results in significantly improved mechanical durability, thermal stability and/or haze characteristics.
摘要:
A coated article is provided with a low-emissivity (low-E) layer stack for use in a window unit or the like. The layer stack, or coating, may permit the coated article to achieve one or more of a fairly low solar factor (SF) value, a high selectivity (Tvis/SF) value, substantially neutral color at normal and/or off-axis viewing angles, and/or low emissivity. When high selectivity values are achieved, there is provided a high ratio of visible transmission to SF, which is a desirable feature in certain example instances. In certain example embodiments, a sub-oxide layer (e.g., NiCrOx) may be used as a contact layer under an infrared (IR) reflecting layer in order to permit low SF values, high selectivity, and good coloration to be achieved.
摘要翻译:涂覆制品设置有用于窗单元等的低发射率(低E)层叠层。 层叠层或涂层可以允许涂覆制品实现一个或多个相当低的太阳能因子(SF)值,高选择性(T /σ/ SF)值,基本上中性的颜色 正常和/或离轴视角,和/或低发射率。 当实现高选择性值时,提供了高可见透射率与SF的比率,这在某些示例中是一个期望的特征。 在某些示例性实施例中,可以使用次氧化物层(例如,NiCrO x X)作为红外(IR)反射层下的接触层,以便允许低SF值,高选择性和 良好的着色要实现。
摘要:
A high transmittance fairly clear/neutral colored glass composition is provided. An oxidizing agent(s) such as cerium oxide (e.g., CeO2) or the like is added to the glass batch in order to realize very oxidized conditions (i.e., to significantly lower the redox of the resulting glass). As a result of the oxidizing agent(s) used in the batch, the iron is oxidized to a very low FeO (ferrous state) content. For example, this may result in a glass having a glass redox value of no greater than 0.12 (more preferably
摘要:
A coated article is provided which may be heat treated (e.g., thermally tempered) and/or heat bent in certain example instances. In certain example embodiments, an interlayer of or including a metal oxide such as tin oxide is provided under an infrared (IR) reflecting layer so as to be located between respective layers of or including silicon nitride and zinc oxide. It has been found that the use of such a tin oxide inclusive interlayer results in significantly improved bendability of the coated article in applications such as vehicle windshields with deep bends. In certain example instances, an overcoat of a material such as zirconium oxide may also be provided.
摘要:
Durability and/or longevity of a diamond-like carbon (DLC) layer can be improved by varying the voltage and/or ion energy used to ion beam deposit the DLC layer. For example, a relatively low voltage may be used to ion beam deposit a first portion of the DLC layer on the substrate, and thereafter a second higher voltage(s) used to ion beam deposit a second higher density portion of the DLC layer over the first portion of the DLC layer. In such a manner, ion mixing at the bottom of the DLC layer can be reached, and the longevity and/or durability of the DLC improved.
摘要:
A vacuum insulating (IG) unit and method of making the same. A low pressure space is provided between opposing substrates. An edge sealing system includes at least first and second edge seals. A plurality of spacers or pillars are located at least partially between the first and second edge seals, in order to better control the gap or spacing between the two opposing substrates.