摘要:
A photovoltaic device including a rear electrode which may also function as a rear reflector. In certain example embodiments of this invention, the rear electrode includes a metallic based reflective film that is oxidation graded, so as to be more oxided closer to a rear substrate (e.g., glass substrate) supporting the electrode than at a location further from the rear substrate. In other words, the rear electrode is oxidation graded so as to be less oxided closer to a semiconductor absorber of the photovoltaic device than at a location further from the semiconductor absorber in certain example embodiments. In certain example embodiments, the interior surface of the rear substrate may optionally be textured so that the rear electrode deposited thereon is also textured so as to provide desirable electrical and reflective characteristics. In certain example embodiments, the rear electrode may be of or include Mo and/or MoOx, and may be sputter-deposited using a combination of MoOx and Mo sputtering targets.
摘要:
A photovoltaic device including a rear electrode which may also function as a rear reflector. In certain example embodiments of this invention, the rear electrode includes a metallic based reflective film that is oxidation graded, so as to be more oxided closer to a rear substrate (e.g., glass substrate) supporting the electrode than at a location further from the rear substrate. In other words, the rear electrode is oxidation graded so as to be less oxided closer to a semiconductor absorber of the photovoltaic device than at a location further from the semiconductor absorber in certain example embodiments. In certain example embodiments, the interior surface of the rear substrate may optionally be textured so that the rear electrode deposited thereon is also textured so as to provide desirable electrical and reflective characteristics. In certain example embodiments, the rear electrode may be of or include Mo and/or MoOx, and may be sputter-deposited using a combination of MoOx and Mo sputtering targets.
摘要:
A photovoltaic device including a rear electrode which may also function as a rear reflector. In certain example embodiments of this invention, the rear electrode includes a metallic based reflective film that is oxidation graded, so as to be more oxided closer to a rear substrate (e.g., glass substrate) supporting the electrode than at a location further from the rear substrate. In other words, the rear electrode is oxidation graded so as to be less oxided closer to a semiconductor absorber of the photovoltaic device than at a location further from the semiconductor absorber in certain example embodiments. In certain example embodiments, the interior surface of the rear substrate may optionally be textured so that the rear electrode deposited thereon is also textured so as to provide desirable electrical and reflective characteristics. In certain example embodiments, the rear electrode may be of or include Mo and/or MoOx, and may be sputter-deposited using a combination of MoOx and Mo sputtering targets.
摘要:
A photovoltaic device including a rear electrode which may also function as a rear reflector. In certain example embodiments of this invention, the rear electrode includes a metallic based reflective film that is oxidation graded, so as to be more oxided closer to a rear substrate (e.g., glass substrate) supporting the electrode than at a location further from the rear substrate. In other words, the rear electrode is oxidation graded so as to be less oxided closer to a semiconductor absorber of the photovoltaic device than at a location further from the semiconductor absorber in certain example embodiments. In certain example embodiments, the interior surface of the rear substrate may optionally be textured so that the rear electrode deposited thereon is also textured so as to provide desirable electrical and reflective characteristics. In certain example embodiments, the rear electrode may be of or include Mo and/or MoOx, and may be sputter-deposited using a combination of MoOx and Mo sputtering targets.
摘要:
Certain example embodiments relate to a sunlight-scattering thin-film coating disposed on a substrate for greenhouse applications. The surface morphology of the coating promotes a better and more uniform light distribution. For instance, at least one thin-film layer disposed on a substrate may be textured so as to create surface features on the order of 0.1-5 microns, with the surface features being sized to cause (a) light having a wavelength of greater than or equal to about 800 nm incident thereon to primarily scatter to angles less than 30 degrees relative to a major surface of the substrate and (b) light having a wavelength of less than or equal to about 700 nm incident thereon to primarily scatter to angles greater than 20 degrees relative to the major surface of the substrate. This arrangement may advantageously direct beneficial light towards plant life while directing parasitic light away from the plant life.
摘要:
Certain example embodiments relate to a sunlight-scattering thin-film coating disposed on a substrate for greenhouse applications. The surface morphology of the coating promotes a better and more uniform light distribution. For instance, at least one thin-film layer disposed on a substrate may be textured so as to create surface features on the order of 0.1-5 microns, with the surface features being sized to cause (a) light having a wavelength of greater than or equal to about 800 nm incident thereon to primarily scatter to angles less than 30 degrees relative to a major surface of the substrate and (b) light having a wavelength of less than or equal to about 700 nm incident thereon to primarily scatter to angles greater than 20 degrees relative to the major surface of the substrate. This arrangement may advantageously direct beneficial light towards plant life while directing parasitic light away from the plant life.
摘要:
Certain example embodiments of this invention relate to techniques for reducing stress asymmetry in sputtered polycrystalline films. In certain example embodiments, sputtering apparatuses that include one or more substantially vertical, non-conductive shield(s) are provided, with such shield(s) helping to reduce the oblique component of sputter material flux, thereby promoting the growth of more symmetrical crystallites. In certain example embodiments, the difference between the travel direction tensile stress and the cross-coater tensile stress of the sputtered film preferably is less than about 15%, more preferably less than about 10%, and still more preferably less than about 5%.
摘要:
Certain example embodiments of this invention relate to techniques for reducing stress asymmetry in sputtered polycrystalline films. In certain example embodiments, sputtering apparatuses that include one or more substantially vertical, non-conductive shield(s) are provided, with such shield(s) helping to reduce the oblique component of sputter material flux, thereby promoting the growth of more symmetrical crystallites. In certain example embodiments, the difference between the travel direction tensile stress and the cross-coater tensile stress of the sputtered film preferably is less than about 15%, more preferably less than about 10%, and still more preferably less than about 5%.
摘要:
Certain example embodiments of this invention relate to a photovoltaic (PV) device including an electrode such as a front electrode/contact, and a method of making the same. In certain example embodiments, the front electrode has a textured (e.g., etched) surface that faces the photovoltaic semiconductor film of the PV device. In certain example embodiments, the front electrode is formed on a flat or substantially flat (non-textured) surface of a glass substrate (e.g., via sputtering), and the surface of the front electrode is textured (e.g., via etching). In completing manufacture of the PV device, the etched surface of the front electrode faces the active semiconductor film of the PV device.
摘要:
A photovoltaic device (e.g., solar cell) includes: a front substrate (e.g., glass substrate); a semiconductor absorber film; a back contact including a first conductive layer of or including copper (Cu) and a second conductive layer of or including molybdenum (Mo); and a rear substrate (e.g., glass substrate). The first conductive layer of or including copper is located between at least the rear substrate and the second conductive layer of or including molybdenum, and wherein the semiconductor absorber film is located between at least the back contact and the front substrate.