摘要:
An optical scanning device, arranged on one side of at least two to-be-scanned members in a second direction, and the two to-be-scanned members being arranged in a first direction perpendicular to the second, includes: an illuminating system that emits beams including a first beam and a second beam whose polarization directions are different from each other; an optical deflector that deflects the beams; and a scanning optical system that includes a polarization separation element that transmits one of the first and second beams and reflects the other; a first mirror group including reflecting mirrors for guiding the first beam to a to-be-scanned member; and a second mirror group including reflecting mirrors for guiding the second beam to a to-be-scanned member. Last-stage reflecting mirrors in the first and second mirror groups are arranged on one side of the beams deflected by the optical deflector in the second direction.
摘要:
A polarization splitting device includes a polarization beam splitter having a polarization splitting surface and allows P-polarized light to transmit therethrough and reflects S-polarized light. A subwavelength structure grating is formed on the polarization splitting surface with a grating pitch smaller than wavelength of incident light. The polarization splitting device also includes a polarizer that is arranged on an optical path of light reflected from the polarization beam splitter and has a transmission axis that is parallel to a polarization direction of the S-polarized light.
摘要:
An optical scanning device acquires a displacement amount of each of scanning light beams in the main scanning direction, and corrects, based on the displacement amount, writing energy density at a write position such that a variation in image density due to a variation of the displacement amount is reduced. The light beams are used for scanning a target surface to write image data on the target surface. The writing energy density is an amount of light per unit surface area of the target surface.
摘要:
An optical scanning apparatus includes M number of light sources that includes M number of semiconductor lasers and M number of coupling lenses, where M is a positive integer, a deflecting scanning unit that deflects laser beams from the light sources to a surface to be scanned, and a transmission-type prism that deflects optical path of the laser beam from at least one of the light sources by an infinitesimal amount of angle. The prism is disposed between the light sources and the deflecting scanning unit, has an incident surface and an output surface nonparallel to each other, and can rotate around an axis of rotation substantially parallel to the optical path of the laser beam.
摘要:
An optical scanning apparatus is provided, in which the optical scanning apparatus includes: a light source emitting an optical beam; an optical deflection unit deflecting the optical beam emitted from the light source; a scanning optical arrangement scanning a scanned surface by the optical beam in a main scanning direction; and an optical beam detection unit detecting the optical beam moving in the main scanning direction. The optical beam detection unit includes a first photodetector and a second photodetector, and the first photodetector including a first part and a second part that are electrically connected, wherein a first gap is formed between an edge of the first part and a first edge of the second photodetector, a second gap is formed between an edge of the second part and a second edge of the second photodetector, and the first gap and the second gap are not parallel to each other.
摘要:
In an optical scanning device and image forming apparatus according to the present invention, a light source emits a light beam, and a scanning optical unit deflects the light beam from the light source and focuses the deflected light beam to form a light spot on a scanned surface, the scanned surface being scanned by the light beam from the scanning optical unit. A temperature detection unit detects a temperature of the scanning optical unit and its neighboring locations. A temperature compensation unit adjusts a focal-point position of the light beam on the scanned surface in accordance with a change in the temperature detected by the temperature detection unit, the temperature compensation unit adjusting the focal-point position of the light beam by directly varying a focusing effect of a corrector lens on the light beam from the light source by a controlled amount of movement of the corrector lens along its optical axis that corresponds to the temperature change.
摘要:
An optical scanning unit includes a light source that emits a light beam, a light deflector that deflects the light beam from the light source, and a scanning optical system that focuses the light beam deflected by the light deflector on a scanning surface. The light beam from the light source is at an angle in a secondary scanning direction with respect to a normal to a reflecting surface of the light deflector. At least one surface of the scanning optical system does not have a curvature in the secondary scanning direction, being tilted and decentered in the secondary scanning direction.
摘要:
An optical scanning apparatus includes M number of light sources that includes M number of semiconductor lasers and M number of coupling lenses, where M is a positive integer, a deflecting scanning unit that deflects laser beams from the light sources to a surface to be scanned, and a transmission-type prism that deflects optical path of the laser beam from at least one of the light sources by an infinitesimal amount of angle. The prism is disposed between the light sources and the deflecting scanning unit, has an incident surface and an output surface nonparallel to each other, and can rotate around an axis of rotation substantially parallel to the optical path of the laser beam.
摘要:
The imaging position of an optical beam spot in an optical scanning device is adjusted. The imaging position of the optical beam spot is adjusted in both a main scanning direction and a sub-scanning direction. The imaging position of the optical beam spot in the main scanning direction is adjusted by individually adjusting, in an optical axis direction, a position of at least one lens 10 having power in the main scanning direction. The imaging position of the optical beam spot in the sub-scanning direction is adjusted by collectively adjusting, in the optical axis direction, a position of the linear image imaging optical system 100 as a whole.
摘要:
An optical scanning device employing a scanning imaging optical system that includes a first optical system configured to receive a light flux emitted from a light source, and a second optical system configured to condense the light flux to form a long linear image in a main scanning direction in a vicinity of a deflecting surface of an optical deflector. Also includes is a third optical system configured to condense a light flux deflected by the optical deflector toward a scanned surface to form an optical beam spot on the scanned surface so that a maximum value &Dgr;Mmax and a minimum value &Dgr;Mmin of an amount of change &Dgr;M in an image-surface curvature in the main scanning direction at each image height in an effective writing region with respect to a change &Dgr;T in an environmental temperature satisfy a condition of |(&Dgr;Mmax−&Dgr;Mmin)/&Dgr;T|