Abstract:
A clock generating circuit includes a phase comparison circuit that generates a delay control signal corresponding to the relative phases of an output clock signal and a reference clock signal. A voltage controlled delay circuit generates the delayed clock signal by inverting a signal applied to its input and delaying the signal by a delay that is determined by a delay control signal. A selection circuit couples either the reference clock signal or the delayed clock signal to the input of the voltage controlled delay circuit. When the reference clock signal is coupled to the input of the voltage controlled delay circuit, the clock generating circuit functions as a delay-lock loop. When the delayed clock signal is coupled to the input of the voltage controlled delay circuit, the voltage controlled delay circuit operates as a ring oscillator so that the clock generating circuit functions as a phase-lock loop.
Abstract:
A delay locked loop device includes a first delay line for receiving an external clock signal and a first delay control signal to generate a first internal clock signal; a second delay line for receiving the external clock signal and a second delay control signal or the first delay control signal to generate a second internal clock signal; a first delay control block for receiving the external clock signal to generate the first delay control signal; a second delay control block for receiving the external clock signal to generate the second delay control signal; and a phase detecting block for receiving the first internal clock signal and the second internal clock signal to generate the on-off signal by comparing a phase of the first internal clock signal with a phase of the second internal clock signal.
Abstract:
A register controlled delay locked loop (DLL) usable in a semiconductor device is provided. The register controlled delay locked loop includes an internal clock generating unit generating a delayed clock signal and a reference clock signal, a first delay unit compensating for an amount of delay caused by a signal transmission path of the delayed clock signal, a phase comparator detecting a difference between the reference clock signal and the delayed clock signal and thereby generating a detection signal, a controller having a plurality of second delay units for controlling an amount of delay of the delayed clock signal in response to the detection signal, a driver driving a DLL clock signal, and an enable signal generator enabling the driver in response to an activation or non-activation signal of the semiconductor device.
Abstract:
Fine tuned signal phase adjustments are provided by multiple cascaded phase mixers. Each phase mixer outputs a signal having a phase between the phases of its two input signals. With each subsequent stage of phase mixers, the signals generated by the phase mixers have a smaller phase difference, thereby providing finer delay adjustments. Multiple stages of phase mixers can be provided in digital delay-locked loop circuitry to provide additional hierarchical delay adjustment.
Abstract:
A resister controlled delay locked loop (DLL) is provided which is capable of reducing current consumption by operating the DLL loop when the semiconductor device is only at an operation mode. A semiconductor device having the register controlled DLL and an internal circuit synchronized with a DLL clock signal output from the register controlled DLL, includes an enable signal generator generating an enable signal for the register controlled DLL to control a generation of the DLL clock signal in response to an activation or non-activation signal of the semiconductor device.