摘要:
A method of manufacturing a semiconductor device, comprising forming a metal silicide gate electrode on a semiconductor substrate surface. The method also comprises exposing the metal silicide gate electrode and the substrate surface to a cleaning process. The cleaning process includes a dry plasma etch using an anhydrous fluoride-containing feed gas and a thermal sublimation configured to leave the metal silicide gate electrode substantially unaltered. The method also comprises depositing a metal layer on source and drain regions of the substrate surface and annealing the metal layer and the source and drain regions of the substrate surface to form metal silicide source and drain contacts.
摘要:
The present invention provides a method of fabricating a microelectronics device. In one aspect, the method comprises depositing a protective layer (510) over a spacer material (415) located over gate electrodes (250) and a doped region (255) located between the gate electrodes (250), removing a portion of the spacer material (415) and the protective layer (510) located over the gate electrodes (250). A remaining portion of the spacer material (415) remains over the top surface of the gate electrodes (250) and over the doped region (255), and a portion of the protective layer (510) remains over the doped region (255). The method further comprises removing the remaining portion of the spacer material (415) to form spacer sidewalls on the gate electrodes (250), expose the top surface of the gate electrodes (250), and leave a remnant of the spacer material (415) over the doped region (255). Source/drains are formed adjacent the gate electrodes 250 and through the remnant of the spacer material (415), and a metal is incorporated into the gate electrodes (250).
摘要:
The present invention substantially removes dry etch residue from a dry plasma etch process 110 prior to depositing a cobalt layer 124 on silicon substrate and/or polysilicon material. Subsequently, one or more annealing processes 128 are performed that cause the cobalt to react with the silicon thereby forming cobalt silicide regions. The lack of dry etch residue remaining between the deposited cobalt and the underlying silicon permits the cobalt silicide regions to be formed substantially uniform with a desired silicide sheet and contact resistance. The dry etch residue is substantially removed by performing a first cleaning operation 112 and then an extended cleaning operation 114 that includes a suitable cleaning solution. The first cleaning operation typically removes some, but not all of the dry etch residue. The extended cleaning operation 114 is performed at a higher temperature and/or for an extended duration and substantially removes dry etch residue remaining after the first cleaning operation 112.
摘要:
Disclosed is a shallow trench isolation (STI) structure and methods of manufacturing the same. The methods eliminate the requirement for design size adjustments (DSA) in manufacturing the STI structure. Further disclosed is an STI trench liner and methods for the formation thereof by growing a thin oxide layer on shallow isolation trench surfaces while preventing oxide formation on adjacent nitride surfaces, followed by the deposition of, and oxide growth upon, a polysilicon layer.
摘要:
The present invention facilitates semiconductor device operation and fabrication by providing a cap-annealing process that improves channel electron mobility without substantially degrading PMOS transistor devices. The process uses an oxide/nitride composite cap to alter the active dopant profile across the channel regions. During an annealing process, dopants migrate out of the Si/SiO2 in a channel region thereby altering the dopant profile of the channel region. This altered profile generally improves channel mobility thereby improving transistor performance and permitting smaller density designs.
摘要:
A trench structure in a wafer of semiconductor material and the method of forming the trench structure are described. The trench structure is formed on a semiconductor wafer that has a top surface of slow oxidization rate—slower than that of other major crystallographic planes of the semiconductor material. The trench is etched into the semiconductor wafer. The trench has substantially vertical trench-sidewalls near the top surface, the vertical trench-sidewalls near the top surface containing crystallographic plane that oxidizes at a rate comparable to that of the top surface. An insulating layer is grown on the top surface and on the trench-sidewalls and on corners where sidewall surfaces approach the top surface, the insulating layer at the corners being substantially thicker than at the sidewall adjacent to the corners. The difference in the oxide thickness is due to the faster oxidizing planes exposed at the corners. Finally, the trench is filled with a dielectric material.
摘要:
A method of forming an integrated circuit transistor (80), comprising providing a semiconductor region (90) and forming a gate structure (92, 94) in a fixed position relative to the semiconductor region. The gate structure has a first sidewall (94a) and a second sidewall (94b). The method also comprises first, forming a first layer (96) adjacent the first sidewall and the second sidewall, and second, forming a second layer (98) adjacent the first layer. The method also comprises third, forming a third layer (100) adjacent the second layer, and fourth, forming a fourth layer (102) adjacent the third layer. The method also comprises fifth, implanting a first and second source/drain region (106a, 106b) in the semiconductor region and at a first distance laterally with respect to the gate structure, wherein a combined thickness of the first, second, third, and fourth layers determines the first distance. The method also comprises sixth, removing the third and fourth layers, and seventh, implanting a third and fourth source/drain region (108a, 108b) in the semiconductor region and at a second distance laterally with respect to the gate structure, wherein the second distance is less than the first distance.
摘要:
A method for measuring the step height of a STI structure is described. The method involves measuring the change in resistance of a polysilicon structure as the step height changes. The resistance of the polysilicon structure is measured by applying a voltage and measuring the resulting current.
摘要:
A method of forming a flash memory array structure includes forming a first dielectric layer outwardly from a semiconductor substrate, removing a portion of the first dielectric layer and the substrate to create a trench isolation region, forming a second dielectric layer in the trench isolation region, removing a portion of the second dielectric layer to create an exposed substrate region proximate a bottom of the trench isolation region, doping the exposed substrate region with an n-type dopant, and forming a silicide region in the exposed substrate region.
摘要:
A method for fabricating a semiconductor resistor in embedded FLASH memory applications is described. In the method a gate array (9) is formed on a semiconductor substrate. Isolations regions (70) are removed and the exposed silicon implanted forming diffused regions (180). The SAS so formed can be configured to function as a resistor element (240).