Abstract:
A test and measurement instrument, including a splitter configured to split an input signal into two split input signals and output each split input signal onto a separate path and a combiner configured to receive and combine an output of each path to reconstruct the input signal. Each path includes an amplifier configured to receive the split input signal and to compress the split input signal with a sigmoid function, a digitizer configured to digitize an output of the amplifier; and at least one processor configured to apply an inverse sigmoid function on the output of the digitizer.
Abstract:
Embodiments of the present invention provide improved techniques for recovering clock information from data signals. In one embodiment, a general purpose device such as a real-time oscilloscope acquires a data signal. The device takes a derivative of the data signal, then computes the square or absolute of the derivative before applying a bandpass filter. The bandpass filter is a windowing function a spectrum that is wider than the clock, and has a flat top and smooth transitions on both sides. In one embodiment, at Tukey window may be used. The device finds edge crossing times of the filtered result, and applies a phase-locked loop or lowpass filter to the edge crossing times in order to recover a stable clock signal. When the improved techniques are implemented in software, they may be used with any number of different equalizers that are required by various high-speed serial data link systems.
Abstract:
A method for determining scattering parameters of a device under test using a real-time oscilloscope. The method includes calculating a reflection coefficient of each port of a device under test with N ports, wherein N is greater than one, based on a first voltage measured by the real-time oscilloscope when a signal is generated from a signal generator. The method also includes determining an insertion loss coefficient of each port of the device under test, including calculating the insertion loss coefficient of the port of the device under test to be measured based on a second voltage measured by the real-time oscilloscope when a signal is generated from a signal generator.
Abstract:
Computationally efficient methods and related systems, for use in a test and measurement instrument, such as an oscilloscope, optimize the performance of DFEs used in a high-speed serial data link by identifying optimal DFE tap values for peak-to-peak based criteria. The optimized DFEs comply with the behavior of a model DFE set forth in the PCIE 3.0 specification.
Abstract:
A test and measurement system including a device under test, two de-embed probes connected to the device under test, and a test and measurement instrument connected to the two de-embed probes. The test and measurement instrument includes a processor configured to determine the S-parameter set of the device under test based on measurements from the device under test taken by the two de-embed probes.