Abstract:
A wireless combination device is coupled to an antenna for communicating via a first wireless network. A second wireless transceiver configured for communication via said second wireless network. A packet aggregator is coupled to the first wireless transceiver configures a frame aggregated packet for at least a portion of activities on the first wireless network. The frame aggregated packet includes a plurality of data packets and a dummy packet or spoofing so that said frame aggregated packet is extended in time or indicates an extension sufficient to overlap a Tx time interval or Rx time interval for communications occurring over a second wireless network. The first wireless network and said second wireless network are overlapping networks.
Abstract:
A network includes at least two nodes that employ a routing protocol to communicate across a network. One of the nodes is a parent node and another of the nodes is a child node of the parent node. An address generator assigns a unique network address to the child node by appending an address value of a number of bits to a parent address of the parent node to create the unique network address for the child node.
Abstract:
A vehicular battery management system (BMS) comprises a battery controller, a set of battery cells, a primary network node coupled to the battery controller, and a secondary network node coupled to the set of battery cells. The primary and secondary network nodes are configured to wirelessly communicate with each other using frames that share a common frame format. The frame format includes one or more bits and a status of the one or more bits indicates whether the secondary network node is to communicate with the primary network node on behalf of another secondary network node.
Abstract:
A system and method for optimizing power consumption of energy harvesting nodes in a wireless sensor network. In one embodiment, a system includes a network coordinator. The network coordinator includes a wireless transceiver and a controller. The wireless transceiver is configured to provide access to the wireless sensor network. The controller is configured to determine whether a wireless device that is wirelessly communicating with the network coordinator is powered via energy harvesting. The controller is also configured to schedule, based on a determination that the wireless device is powered via energy harvesting, the wireless device to communicate via the wireless sensor network using a priority timeslot of a superframe of the wireless sensor network. The priority timeslot is a timeslot occurring in an initial portion of the superframe.
Abstract:
A network includes at least one node to communicate with at least one other node via a wireless network protocol. The node includes a network configuration module to periodically switch a current node function of the node between an intermediate node function and a leaf node function. The switch of the current node function enables automatic reconfiguration of the wireless network based on detected communications between the at least one node and at least one intermediate node or at least one leaf node via the wireless network protocol.
Abstract:
A system and method for optimizing power consumption of energy harvesting nodes in a wireless sensor network. In one embodiment, a system includes a network coordinator. The network coordinator includes a wireless transceiver and a controller. The wireless transceiver is configured to provide access to the wireless sensor network. The controller is configured to determine whether a wireless device that is wirelessly communicating with the network coordinator is powered via energy harvesting. The controller is also configured to schedule, based on a determination that the wireless device is powered via energy harvesting, the wireless device to communicate via the wireless sensor network using a priority timeslot of a superframe of the wireless sensor network. The priority timeslot is a timeslot occurring in an initial portion of the superframe.
Abstract:
A vehicular battery management system (BMS) comprises a battery controller, a set of battery cells, a primary network node coupled to the battery controller, and a secondary network node coupled to the set of battery cells. The primary and secondary network nodes are configured to wirelessly communicate with each other using frames that share a common frame format. The frame format includes one or more bits and a status of the one or more bits indicates whether the secondary network node is to communicate with the primary network node on behalf of another secondary network node.
Abstract:
A method for managing Internet Protocol Version 6 (IPv6) addresses in a wireless sensor network is provided that includes storing, on a wireless sensor device in the wireless sensor network, a prefix of an IPv6 address in association with a key, forming an address indicator for the IPv6 address, the address indicator consisting of the key and a node address of the IPv6 address, and storing the address indicator in at least one memory location on the wireless sensor device in lieu of the IPv6 address.
Abstract:
An integrated circuit for use in a wireless management system with a primary node and secondary nodes includes: a wireless transceiver; and a wireless management controller included with or coupled to the wireless transceiver. The wireless management controller is configured to: identify a first secondary node of the secondary nodes in communication with the primary node; identify a second secondary node of the secondary nodes not in communication with the primary node; and enable the first secondary node to operate as a proxy node that repeats downlink messages to or uplink messages from the second secondary node.
Abstract:
A network includes at least two nodes that employ a routing protocol to communicate across a network. One of the nodes is a parent node and another of the nodes is a child node of the parent node. An address generator assigns a unique network address to the child node by appending an address value of a number of bits to a parent address of the parent node to create the unique network address for the child node.