NIckel Alloy for Semiconductor Packaging

    公开(公告)号:US20210242151A1

    公开(公告)日:2021-08-05

    申请号:US17234429

    申请日:2021-04-19

    Abstract: A packaged semiconductor die includes a semiconductor die coupled to a die pad. The semiconductor die has a front side containing copper leads, a copper seed layer coupled to the copper leads, and a nickel alloy coating coupled to the copper seed layer. The nickel alloy includes tungsten and cerium (NiWCe). The packaged semiconductor die may also include wire bonds coupled between leads of a lead frame and the copper leads of the semiconductor die. In addition, the packaged semiconductor die may be encapsulated in molding compound. A method for fabricating a packaged semiconductor die. The method includes forming a copper seed layer over the copper leads of the semiconductor die. In addition, the method includes coating the copper seed layer with a nickel alloy. The method also includes singulating the semiconductor wafer to create individual semiconductor die and placing the semiconductor die onto a die pad of a lead frame. In addition the method includes wire bonding the leads of a lead frame to the copper leads of the semiconductor die and then encapsulating the die in molding compound.

    Semiconductor device with electroplated die attach

    公开(公告)号:US10714417B2

    公开(公告)日:2020-07-14

    申请号:US16791922

    申请日:2020-02-14

    Abstract: A packaged semiconductor device includes a metal substrate having a center aperture with a plurality of raised traces around the center aperture including a metal layer on a dielectric base layer. A semiconductor die that has a back side metal (BSM) layer is mounted top side up in a top portion of the center aperture. A single metal layer directly between the BSM layer and walls of the metal substrate bounding the center aperture to provide a die attachment that fills a bottom portion of the center aperture. Leads having at least one bend that contact the metal layer are on the plurality of traces and include a distal portion that extends beyond the metal substrate. Bond wires are between the traces and bond pads on the semiconductor die. A mold compound provides encapsulation.

    Semiconductor Device With Electroplated Die Attach

    公开(公告)号:US20200185318A1

    公开(公告)日:2020-06-11

    申请号:US16791922

    申请日:2020-02-14

    Abstract: A packaged semiconductor device includes a metal substrate having a center aperture with a plurality of raised traces around the center aperture including a metal layer on a dielectric base layer. A semiconductor die that has a back side metal (BSM) layer is mounted top side up in a top portion of the center aperture. A single metal layer directly between the BSM layer and walls of the metal substrate bounding the center aperture to provide a die attachment that fills a bottom portion of the center aperture. Leads having at least one bend that contact the metal layer are on the plurality of traces and include a distal portion that extends beyond the metal substrate. Bond wires are between the traces and bond pads on the semiconductor die. A mold compound provides encapsulation.

    Alloy diffusion barrier layer
    79.
    发明授权

    公开(公告)号:US10424552B2

    公开(公告)日:2019-09-24

    申请号:US15954254

    申请日:2018-04-16

    Abstract: A microelectronic device includes a reflow structure. The reflow structure has a copper-containing member and a solder member, and a barrier layer between them. The barrier layer has metal grains, with a diffusion barrier filler between the metal grains. The metal grains include at least a first metal and a second metal, each selected from nickel, cobalt, lanthanum, and cerium, with each having a concentration in the metal grains of at least 10 weight percent. The diffusion barrier filler includes at least a third metal, selected from tungsten and molybdenum. A combined concentration of tungsten and molybdenum in the diffusion barrier filler is higher than in the metal grains to provide a desired resistance to diffusion of copper. The barrier layer includes 2 weight percent to 15 weight percent of the combined concentration of tungsten, and molybdenum. A bump bond structure and a lead frame package are disclosed.

    NANOSTRUCTURE BARRIER FOR COPPER WIRE BONDING

    公开(公告)号:US20190088389A1

    公开(公告)日:2019-03-21

    申请号:US15984346

    申请日:2018-05-19

    Abstract: A nanostructure barrier for copper wire bonding includes metal grains and inter-grain metal between the metal grains. The nanostructure barrier includes a first metal selected from nickel or cobalt, and a second metal selected from tungsten or molybdenum. A concentration of the second metal is higher in the inter-grain metal than in the metal grains. The nanostructure barrier may be on a copper core wire to provide a coated bond wire. The nanostructure barrier may be on a bond pad to form a coated bond pad. A method of plating the nanostructure barrier using reverse pulse plating is disclosed. A wire bonding method using the coated bond wire is disclosed.

Patent Agency Ranking