摘要:
There is provided a magnetic memory device which has a small switching current for a writing line and which has a small variation therein. A method for producing such a magnetic memory device includes: forming a magnetoresistive effect element; forming a first insulating film so as to cover the magnetoresistive effect element; forming a coating film so as to cover the first insulating film; exposing a top face of the magnetoresistive effect element; forming an upper writing line on the magnetoresistive effect element; exposing the first insulating film on a side portion of the magnetoresistive effect element by removing a part or all of the coating film; and forming a yoke structural member so as to cover at least a side portion of the upper writing line and so as to contact the exposed first insulating film on the side portion of the magnetoresistive effect element.
摘要:
A magnetic memory device includes a first write wiring which runs in a first direction, a second write wiring which runs in a second direction different from the first direction, and a magnetoresistive element which is arranged at an intersection between the first and second write wirings, has a fixed layer, a recording layer, and a magnetoresistive layer sandwiched between the fixed layer and the recording layer, and has an axis of easy magnetization obliquely with respect to the first and second directions, the recording layer including a first ferromagnetic layer, a second ferromagnetic layer, and a first nonmagnetic layer sandwiched between the first and second ferromagnetic layers, in which first magnetization of the first ferromagnetic layer and second magnetization of the second ferromagnetic layer are ferromagnetically coupled, and a ferro-coupling constant C of a ferromagnetic coupling is 0.0001 erg/cm2≦C≦0.2 erg/cm2.
摘要翻译:一种磁存储器件包括沿第一方向延伸的第一写入布线,沿与第一方向不同的第二方向延伸的第二写入布线和布置在第一和第二写入布线之间的交叉点处的磁阻元件, 具有夹在固定层和记录层之间的固定层,记录层和磁阻层,并且具有相对于第一和第二方向倾斜的易磁化轴,记录层包括第一铁磁层, 第一铁磁层和夹在第一和第二铁磁层之间的第一非磁性层,其中第一铁磁层的第一磁化和第二铁磁层的第二磁化被铁磁耦合,并且铁磁耦合的铁磁耦合常数C 为0.0001 erg / cm 2 <= C <= 0.2 ERG / CM 2。
摘要:
There is provided a magnetoresistance effect element capable of precisely defining the active region in a CPP type MR element and of effectively suppressing and eliminating the influence of a magnetic field due to current from an electrode, and a magnetic head and magnetic reproducing system using the same. The active region of the MR element is defined by the area of a portion through which a sense current flows. Moreover, the shape of the cross section of a pillar electrode or pillar non-magnetic material for defining the active region of the element is designed to extend along the flow of a magnetic flux so as to efficiently read only a signal from a track directly below the active region. When the magnetic field due to current from the pillar electrode can not be ignored, the magnetic flux from a recording medium asymmetrically enters yokes and the magnetization free layer of the MR element to some extent. In expectation of this, if the cross section of the pillar electrode is designed to be asymmetric so as to extend along the flow of the magnetic flux, the regenerative efficiency is improved.
摘要:
A magnetic element, including a first magnetic reference part (a) including a first ferromagnetic substance pinned in magnetization (M1) substantially in a first direction, a second magnetic reference part (E) including a second ferromagnetic substance pinned in magnetization (M3) substantially in a second direction, and a magnetic recording part (C) provided between the first and second magnetic reference parts. The magnetic recording part includes a third ferromagnetic substance. A spin transfer intermediate part (B) is provided between the first magnetic reference part and the magnetic recording part. An intermediate part (D) is provided between the second magnetic reference part and the magnetic recording part. A magnetization (M2) of the third ferromagnetic substance can be directed in a direction parallel or anti-parallel to the first direction by passing a writing current between the first magnetic reference part and the magnetic recording part. A relative relation between the second direction and the direction of the magnetization of the third ferromagnetic substance can be detected by passing a sense current between the second magnetic reference part and the magnetic recording part.
摘要:
A magnetic random access memory in which “0” data and “1” data are associated with resistance values of a non-magnetic layer of a magnetoresistive element, the resistance values being variable depending on orientation of magnetization of a magnetic free layer and a magnetic pinned layer which sandwich the non-magnetic layer, and current is let to flow to first and second write current paths, which are provided close to the magnetoresistive element and are separated from each other, thereby producing a composite write magnetic field, changing a direction of magnetization of the free layer, wherein the first write current path includes a channel region of an insulated-gate transistor that is disposed close to the free layer, and the transistor is controlled such that a channel current with a desired magnitude flows in the transistor.
摘要:
A magnetic memory device includes first wiring which runs in the first direction, second wiring which runs in the second direction, a magneto-resistance element which is arranged at an intersection between the first and second wirings, a first yoke main body which covers at least either of the lower surface and two side surfaces of the first wring, a second yoke main body which covers at least either of the upper surface and two side surfaces of the second wiring, first and second yoke tips which are arranged on two sides of the magneto-resistance element in the first direction at an interval from the magneto-resistance element, and third and fourth yoke tips which are arranged on two sides of the magneto-resistance element in the second direction at an interval from the magneto-resistance element.
摘要:
A semiconductor integrated circuit device includes a magneto-resistive effect element and a plug. The magneto-resistive effect element includes a first magnetic layer whose magnetization direction is fixed and a second magnetic layer whose magnetization direction can be changed. The plug is formed to penetrate through the second magnetic layer in the film thickness direction of the second magnetic layer and used to apply a write magnetic field to the second magnetic layer.
摘要:
A write line is covered with a yoke material. The recording layer of an MTJ element is exchange-coupled to the yoke material. The total magnetic volume ΣMsi×ti of the recording layer of the MTJ element and a portion of the yoke material that is exchange-coupled to the recording layer is smaller than the magnetic volume ΣMsi′×ti′ of the remaining portion of the yoke material that covers the write line.
摘要:
A write word line is disposed right under an MTJ element. The write word line extends in an X direction, and a lower surface of the line is coated with a yoke material which has a high permeability. A data selection line (read/write bit line) is disposed right on the MTJ element. A data selection line extends in a Y direction intersecting with the X direction, and an upper surface of the line is coated with the yoke material which has the high permeability. At a write operation time, a magnetic field generated by a write current flowing through a write word line B and data selection line functions on the MTJ element by the yoke material with good efficiency.
摘要:
A highly reliable magnetic memory exhibits enhanced data-holding stability at high storage density in a storage layer of a magnetoresistive effect element used for memory cells. A magnetic memory includes a memory cell array having first wirings, second wirings intersecting the first wirings and memory cells each provided at an intersection area of the corresponding first and second wirings. Each memory cell is selected when the corresponding first and second wirings are selected. Each memory cell includes a magnetoresistive effect element having a storage layer in which data is stored by magnetic fields generated when current flows the selected first and second wirings, a first magnetic member, having two ends, provided as partially surrounding each first wiring and the two ends being situated in a direction of easy axis of magnetization, to form a closed-loop magnetic circuitry with the storage layer, and a second magnetic member, having two ends, provided as partially surrounding each second wiring and the two ends being situated in a direction of hard axis of magnetization, to amplify magnetic fields applied to the storage layer in the direction of hard axis of magnetization. Each end of the first magnetic member is situated as closer than each end of the second magnetic member to the storage layer.