摘要:
An integrated circuit includes a first electrode, a second electrode, and a damascene structured memory element coupled to the first electrode and the second electrode. The memory element has a height and a width. The height is greater than or equal to the width. The memory element includes resistance changing material doped with dielectric material.
摘要:
A memory includes a first die including a first array of phase change memory cells and a second die including a second array of phase change memory cells. The second die is stacked above the first die. The memory includes lines configured to access the first die and the second die. The first die and the second die are enclosed in a single package.
摘要:
An integrated circuit includes a memory element configured to be programmed to any one of at least three resistance states and a circuit. The circuit is configured to program the memory element to a selected one of the at least three resistance states by applying a pulse to the memory element. The pulse includes one of at least three tail portions wherein each tail portion corresponds to one of the at least three resistance states.
摘要:
The integrated circuit includes a transistor and a contact coupled to the transistor. The integrated circuit includes a first diode resistivity changing material memory cell coupled to the contact and a second diode resistivity changing material memory cell coupled to the contact. The second diode resistivity changing material memory cell is positioned above the first diode resistivity changing material memory cell.
摘要:
A layer of nanopaiticles having a dimension on the order of 10 nm is employed to form a current constricting layer or as a hardmask for forming a current constricting layer from an underlying insulator layer. The nanoparticles are preferably self-aligning and/or self-planarizing on the underlying surface. The current constricting layer may be formed within a bottom conductive plate, within a phase change material layer, within a top conductive plate, or within a tapered liner between a tapered via sidewall and a via plug contains either a phase change material or a top conductive material. The current density of the local structure around the current constricting layer is higher than the surrounding area, thus allowing local temperature to rise higher than surrounding material. The total current required to program the phase change memory device, and consequently the size of a programming transistor, is reduced due to the current constricting layer.
摘要:
One embodiment of the present invention relates to a method of programming an array of memory cells. In this method, a selection is made between a first pulse configuration and a second pulse configuration, each of which can write at least two data states to the memory cells of the array. Other embodiments are also disclosed.
摘要:
A memory device includes a phase change memory cell and a circuit. The circuit is for programming the memory cell to a selected one of more than two states by applying a temperature controlled set pulse to the memory cell.
摘要:
A memory cell includes a first electrode, a second electrode, storage material positioned between the first electrode and the second electrode, and a nanocomposite insulator contacting the storage material.
摘要:
A method of operating a phase change memory array is disclosed and includes identifying a read disturb condition associated with the phase change memory array, and performing a conditional refresh operation in response to the identified read disturb condition. A phase change memory is also disclosed and includes an array of phase change memory cells, and a read disturb system configured to identify a read disturb condition and perform a refresh operation on the array in response thereto.
摘要:
A memory device including a memory cell, a first circuit, and a second circuit. The memory cell includes phase-change material. The first circuit is configured to provide pulses to the phase-change material and to program each of more than two states into the memory cell. The second circuit is configured to sense the present state of the memory cell and provide signals that indicate the present state of the memory cell. The first circuit programs each of the more than two states into the memory cell based on the signals.