摘要:
A nanocomposite anode structure and methods of manufacture thereof are disclosed. The nanocomposite comprises a set of substantially dispersed nanoparticles configured to absorb and release lithium ions, wherein each nanoparticle of the set of nanoparticles comprises a core and a shell physically coupled to the core, the core further comprising a set of bonded silicon atoms, the shell further comprising a set of bonded carbon atoms, wherein a core diameter is less than 20 nm, and wherein the shell has a thickness of about 0.1 to about 2 nm. And a set of electrically coupled carbon particles substantially dispersed in the nanocomposite, wherein the set of carbon particles is further electrically coupled with the set of nanoparticles.
摘要:
A silicon nanoparticle fluid including a) a set of silicon nanoparticles present in an amount of between about 1 wt % and about 20 wt % of the silicon nanoparticie fluid; b) a set of HMW binder molecules present in an amount of between about 0 wt % and about 10 wt % of the silicon nanoparticle fluid; and c) a set of capping agent molecules, such that at least some capping agent molecules are attached to the set of silicon nanoparticles. Preferably, the silicon nanoparticle fluid is a shear thinning fluid.
摘要:
A device for generating electricity from solar radiation is disclosed. The device includes a wafer doped with a first dopant, the wafer including a front-side and a back-side, wherein the front-side is configured to be exposed to the solar radiation. The device also includes a fused Group IV nanoparticle thin film deposited on the front-side, wherein the nanoparticle thin film includes a second dopant, wherein the second dopant is a counter dopant. The device further includes a first electrode deposited on the nanoparticle thin film, and a second electrode deposited on the back-side, wherein when solar radiation is applied to the front-side, an electrical current is produced.
摘要:
A Group IV based nanoparticle fluid is disclosed. The nanoparticle fluid includes a set of nanoparticles-comprising a set of Group IV atoms, wherein the set of nanoparticles is present in an amount of between about 1 wt % and about 20 wt % of the nanoparticle fluid. The nanoparticle fluid also includes a set of HMW molecules, wherein the set of HMW molecules is present in an amount of between about 0 wt % and about 5 wt % of the nanoparticle fluid. The nanoparticle fluid further includes a set of capping agent molecules, wherein at least some capping agent molecules of the set of capping agent molecules are attached to the set of nanoparticles.
摘要:
A method of forming a multi-doped junction on a substrate is disclosed. The method includes providing the substrate doped with boron atoms, the substrate comprising a front crystalline substrate surface; and forming a mask on the front crystalline substrate surface, the mask comprising exposed mask areas and non-exposed mask areas. The method also includes exposing the mask to an etchant, wherein porous silicon is formed on the front crystalline substrate surface defined by the exposed mask areas; and removing the mask. The method further includes exposing the substrate to a dopant source in a diffusion furnace with a deposition ambient, the deposition ambient comprising POCl3 gas, at a first temperature and for a first time period, wherein a PSG layer is formed on the front substrate surface; and heating the substrate in a drive-in ambient to a second temperature and for a second time period. Wherein a first diffused region with a first sheet resistance is formed under the porous silicon and a second diffused region with a second sheet resistance is formed under the front crystalline substrate surface without the porous silicon, and wherein the first sheet resistance is substantially smaller than the second sheet resistance.
摘要:
A method for optimizing a solar cell manufacturing process is described. The method includes determining a reference finger spacing value and a reference bulk lifetime for the solar cell manufacturing process. The method also includes measuring an actual bulk lifetime of a wafer with an in-line measurement tool. The method further includes calculating an optimal finger spacing value with a computer coupled to the in-line measurement tool, the optimal finger spacing value being the product of the reference finger spacing value and a square root of the actual bulk lifetime divided by the square root of the reference bulk lifetime. The method further includes forming a junction on the wafer, and depositing a set of busbars and a set of fingers on the wafer with a metal deposition device, wherein a distance between a first finger and a second finger of the set of fingers is about the optimal finger spacing value.
摘要:
A method of forming an ink, the ink configured to form a conductive densified film is disclosed. The method includes providing a set of Group IV semiconductor particles, wherein each Group IV semiconductor particle of the set of Group IV semiconductor particles includes a particle surface with a first exposed particle surface area. The method also includes reacting the set of Group IV semiconductor particles to a set of bulky capping agent molecules resulting in a second exposed particle surface area, wherein the second exposed particle surface area is less than the first exposed particle surface area. The method further includes dispersing the set of Group IV semiconductor particles in a vehicle, wherein the ink is formed.
摘要:
An apparatus and method for making a printed circuit board comprising a substrate and an electrical circuit is provided. The circuit is formed by deposition of a plurality of electronic inks onto the substrate and curing of each of the electronic inks. The deposition may be performed using an ink-jet printing process. The inkjet printing process may include the step of printing a plurality of layers, wherein a first layer includes at least one electronic ink deposited directly onto the substrate, and wherein each subsequent layer includes at least one electronic ink deposited on top of at least a portion of a previous layer when the previous layer has been cured. One or more of the layers may include at least two of the electronic inks.
摘要:
A process for fabricating an electrical component using an ink-jet printing process is provided. The process includes the steps of selecting at least one electronic ink having at least a first functionality when cured; determining a positional layout for a plurality of droplets of the electronic ink(s) such that, based at least on the first functionality, the positional layout provides a desired response for the electrical component; providing at least a first characteristic that relates to the electrical component; comparing the determined positional layout to at least one corresponding entry in a lookup table of empirical data relating to the first characteristic and to the determined positional layout; adjusting the determined positional layout accordingly; and printing each of the droplets of the electronic ink(s) onto a substrate according to the adjusted positional layout. The step of determining a positional layout may include determining a volume of ink to be deposited.
摘要:
An apparatus and method for making a printed circuit board comprising a substrate and an electrical circuit is provided. The circuit is formed by deposition of a plurality of electronic inks onto the substrate and curing of each of the electronic inks. The deposition may be performed using an ink-jet printing process. The inkjet printing process may include the step of printing a plurality of layers, wherein a first layer includes at least one electronic ink deposited directly onto the substrate, and wherein each subsequent layer includes at least one electronic ink deposited on top of at least a portion of a previous layer when the previous layer has been cured. One or more of the layers may include at least two of the electronic inks.