摘要:
Methods of generating wide process range libraries for metrology are described. For example, a method includes generating a first library having a first process range for a first parameter. A second library is generated having a second process range for the first parameter. The second process range is overlapping with the first process range. The second library is stitched to the first library to generate a third library having a third process range for the first parameter. The third process range is wider than each of the first and second process ranges.
摘要:
The profile of a single feature formed on a wafer can be determined by obtaining an optical signature of the single feature using a beam of light focused on the single feature. The obtained optical signature can then be compared to a set of simulated optical signatures, where each simulated optical signature corresponds to a hypothetical profile of the single feature and is modeled based on the hypothetical profile.
摘要:
Specific wavelengths to use in optical metrology of an integrated circuit can be selected using one or more selection criteria and termination criteria. Wavelengths are selected using the selection criteria, and the selection of wavelengths is iterated until the termination criteria are met.
摘要:
A structure formed on a semiconductor wafer can be examined using a support vector machine. A profile model of the structure is obtained. The profile model is defined by profile parameters that characterize the geometric shape of the structure. A set of values for the profile parameters is obtained. A set of simulated diffraction signals is generated using the set of values for the profile parameters, each simulated diffraction signal characterizing the behavior of light diffracted from the structure. The support vector machine is trained using the set of simulated diffraction signals as inputs to the support vector machine and the set of values for the profile parameters as expected outputs of the support vector machine. A measured diffraction signal off the structure is obtained. The measured diffraction signal is inputted into the trained support vector machine. Values of profile parameters of the structure are obtained as an output from the trained support vector machine.
摘要:
Structures formed on a semiconductor wafer are consecutively measured by obtaining first and second measured diffraction signals of a first structure and a second structure formed abutting the first structure. The first and second measured diffraction signals were consecutively measured using an angle-resolved spectroscopic scatterometer. The first measured diffraction signal is compared to a first simulated diffraction signal generated using a profile model of the first structure. The profile model has profile parameters, characterize geometries of the first structure, and an azimuth angle parameter, which define the angle between the plane of incidence beam and direction of periodicity of the first or second structure. One or more features of the first structure are determined based on the comparison. The second measured diffraction signal is compared to a second simulated diffraction signal generated using the same profile model as the first simulated diffraction signal with the azimuth angle parameter having a value that is about 90 degrees different than the value of the azimuth angle parameter used to generate the first simulated diffraction signal. One or more features of the second structure are determined based on the comparison of the second measured diffraction signal to the second simulated diffraction signal.
摘要:
A process step in fabricating a structure on a wafer in a wafer application having one or more process steps and one or more process parameters is controlled by determining a correlation between a set of profile models and one or more key profile shape variables. Each profile model is defined using a set of profile parameters to characterize the shape of the structure. Different sets of profile parameters define the profile models in the set. The one or more key profile shape variables include one or more profile parameters or one or more process parameters. One profile model is selected from the set of profile models based on the correlation and a value of at least one key profile shape variable of the process of the wafer application to be used in fabricating the structure. The structure is fabricated in a first fabrication process cluster using the process step and the value of the at least one key profile shape variable. A measured diffraction signal is obtained off the structure. One or more profile parameters of the structure are determined based on the measured diffraction signal and the selected profile model. The one or more determined profile parameters are transmitted to the first fabrication process cluster or a second fabrication process cluster.
摘要:
A profile model for use in optical metrology of structures in a wafer is selected, the profile model having a set of geometric parameters associated with the dimensions of the structure. The set of geometric parameters is selected to a set of optimization parameters. The number of optimization parameters within the set of optimization parameters is less than the number of geometric parameters within the set of geometric parameters. A set of selected optimization parameters is selected from the set of optimization parameters. The parameters of the set of selected geometric parameters are used as parameters of the selected profile model. The selected profile model is tested against one or more termination criteria.
摘要:
An optical metrology model for a repetitive structure is optimized by selecting one or more profile parameters using one or more selection criteria. One or more termination criteria are set, the one or more termination criteria comprising measures of stability of the optical metrology model. The profile shape features of the repetitive structure are characterized using the one or more selected profile parameters. The optical metrology model is optimized using a set of values for the one or more selected profile parameters. One or more profile parameters of the profile of the repetitive structure are determined using the optimized optical metrology model and one or more measured diffraction signals. Values of the one or more termination criteria are calculated using the one or more determined profile parameters. When the calculated values of the one or more termination criteria do not match the one or more set termination criteria, the selection of the one or more profile parameters and/or the characterization of the profile shape features of the repetitive structure are revised.
摘要:
An apparatus to examine a patterned structure formed on a semiconductor wafer using an optical metrology model includes a fabrication system and a metrology processor. The fabrication system includes a fabrication cluster, metrology cluster, metrology model optimizer, and real time profile estimator. The fabrication cluster is configured to process wafers, the wafers having patterned and unpatterned structures. The patterned structures have underlying film thicknesses, critical dimension, and profile. The metrology cluster includes one or more optical metrology devices. The metrology cluster is configured to measure diffraction signals off the patterned and the unpatterned structures. The metrology model optimizer is configured to optimize an optical metrology model of the patterned structure using one or more measured diffraction signals off the patterned structure and with floating profile parameters, material refraction parameters, and metrology device parameters. The real time profile estimator is configured to use the optimized optical metrology model from the metrology model optimizer, the measured diffraction signals off the patterned structure, and a fixed value within the range of values for at least one parameter from amongst the material refraction parameters and the metrology device parameters. The real time profile estimator is configured to create an output comprising underlying film thickness, critical dimension, and profile of the patterned structure. The metrology data processor is configured to receive, process, store, and transmit the fixed value within the range of values for the at least one parameter from amongst the material refraction parameters and the metrology device parameters.
摘要:
A structure formed on a wafer can be examined by directing an incident pulse at the structure, the incident pulse being a sub-picosecond optical pulse. A diffraction pulse resulting from the incident pulse diffracting from the structure is measured. A characteristic of the profile of the structure is then determined based on the measured diffraction pulse.