摘要:
A diagnostic imaging system includes a high frequency electromagnetic energy source that emits a beam of high frequency electromagnetic energy toward an object to be imaged. An energy discriminating (ED) detector receives high frequency electromagnetic energy emitted by the high frequency electromagnetic energy source. The ED detector includes a direct conversion layer dynamically operable in a photon counting mode in one view and in an integrating mode in another view and an indirect conversion layer. A data acquisition system (DAS) is operably connected to the ED detector and a computer operably connected to the DAS.
摘要:
A diagnostic imaging system includes a high frequency electromagnetic energy source that emits a beam of high frequency electromagnetic energy toward an object to be imaged. An energy discriminating (ED) detector receives high frequency electromagnetic energy emitted by the high frequency electromagnetic energy source. The ED detector includes a direct conversion layer dynamically operable in a photon counting mode in one view and in an integrating mode in another view and an indirect conversion layer. A data acquisition system (DAS) is operably connected to the ED detector and a computer operably connected to the DAS.
摘要:
An energy discrimination radiography system includes at least one radiation source configured to alternately irradiate a component with radiation characterized by at least two energy spectra, where the component has a number of constituents. At least one radiation detector is configured to receive radiation passing through the component and a computer is operationally coupled to the detector. The computer is configured to receive data corresponding to each of the energy spectra for a scan of the component, process the data to generate a multi-energy data set, and decompose the multi-energy data set to generate material characterization images in substantially real time. A method for inspecting the component includes irradiating the component, receiving a data stream of energy discriminated data, processing the energy discriminated data, to generate a multi-energy data set, and decomposing the multi-energy data set, to generate material characterization images in substantially real time.
摘要:
A CT detector capable of energy discrimination and direct conversion is disclosed. The detector includes multiple layers of semiconductor material with the layers having varying thicknesses. The detector is constructed to be segmented in the x-ray penetration direction so as to optimize count rate performance as well as avoid saturation. The detector also includes variable pixel pitch and a flexible binning of pixels to further enhance count rate performance.
摘要:
A method for analyzing materials in an object includes acquiring x-ray projection data of the object at high energy and at low energy for a plurality of views. The acquired x-ray projection data is utilized in a material decomposition to determine material densities at each pixel for two selected basis materials. A composition of an object at each pixel is determined utilizing a determined mapping of material density regions for the two selected basis materials. An image indicative of the composition of the object is displayed utilizing the determined composition.
摘要:
An electronic assembly is provided. The assembly comprises a substrate having a plurality of conductive contacts disposed on a surface of the substrate. The substrate comprises a dielectric material. The assembly comprises a detector having a plurality of conductive contacts disposed on a surface of the detector which is adjacent to the surface of the substrate. At least one compliant interconnect is disposed between the substrate and the detector. The conductive contacts of the substrate and the conductive contacts of the detector are in electrical communication with the compliant interconnect via a conductive epoxy. The compliant interconnect comprises a polymer core having an electrically conductive outer surface. In certain embodiments, the assembly comprises an interposer. In certain embodiments, an under-fill is disposed between the surface of the substrate and the surface of the detector.
摘要:
Disclosed herein is a method for detecting high atomic number elements in an article by using radiation having two different energies. The detecting of high atomic number elements can be accomplished by using an algorithm, curve fitting or using a data table. Disclosed herein too is a radiation system that uses the aforementioned method for detecting high atomic number elements.
摘要:
An imaging scanner includes a radiation source, a radiation detector, and a computer programmed to decompose CT data acquired by the radiation detector into a set of pixels, each pixel having at least a first basis material content and a second basis material content. The computer is further programmed to identify a first subset of the set of pixels as a possible embolism, based on the content of the first basis material and the content of the second basis material.
摘要:
An inspection system is provided. The inspection system includes at least one radiation source including single or multiple energies and configured to transmit a radiation beam through an object under inspection. The inspection system further includes an array of detectors configured to receive multiple radiation beams transmitted through the object, wherein the array of detectors are oriented at different angles with respect to the radiation beam and wherein at least one of the radiation source, and the array of detectors or the object is configured to be actuated in a translational direction relative to each other. The inspection system further includes processing circuitry coupled to the array of detectors and configured to generate a three dimensional image of the object.
摘要:
An adaptive CT data acquisition system and technique is presented whereby radiation emitted for CT data acquisition is dynamically controlled to limit exposure to those detectors of a CT detector assembly that may be particularly susceptible to saturation during a given data acquisition. The data acquisition technique recognizes that for a given subject size and position that pre-subject filtering and collimating of a radiation beam may be insufficient to completely prevent detector saturation. Therefore, the present invention includes implementation of a number of CT data correction techniques for correcting otherwise unusable data of a saturated CT detector. These data correction techniques include a nearest neighbor correction, off-centered phantom correction, off-centered synthetic data correction, scout data correction, planar radiogram correction, and a number of others. The invention is applicable with energy discriminating CT systems as well as with conventional CT systems and other multi-energy CT systems, such as dual kVp-based systems.