摘要:
This invention relates to a data processing method for suppressing truncation artifacts mixed into two-dimensional images in nuclear magnetic resonance imaging. Two-dimensional measurement data arrays are obtained on a space frequency domain by the combination of phase encoding and a readout gradient magentic field, and a data position providing the greatest value of the one-dimensional data array constituting the two-dimensional measurement data array is obtained in the readout direction so as to estimate the origin of the space frequency axis in the readout direction. A high-pass filter using the estimated origin as a reference is applied to each one-dimensional data array, and data extrapolation is made for each one-dimensional data array to obtain a data array having an expanded region. Nuclear spin images are obtained by inverse Fourier transformation of these data arrays.
摘要:
B1 distribution is calculated in a short time with a high degree of precision, and a high quality image is obtained. In the RF shimming for irradiating electromagnetic waves using an RF coil having multiple channels, the absolute values of subtraction images between multiple reconstructed images are used to calculate a transmitting sensitivity distribution which is necessary for calculating inter-channel phase difference and amplitude ratio of RF pulses provided to the respective channels. Those multiple reconstructed images are obtained by executing the imaging sequence after applying a prepulse at different flip angles respectively. Assuming an image obtained with a minimum flip angle as a reference image, for instance, the subtraction images are created between the reference image and the other respective images. It is also possible that multiple subtraction images being obtained are divided by one another, and the transmitting sensitivity distribution is created on the basis of the division result.
摘要:
In the diffusion spectroscopic imaging, in which intensity of molecular diffusion is imaged with separating chemical substances, with suppressing artifacts resulting from object motion of an object, spatial resolution, spectral band and SNR are maintained, and measurement accuracy is enhanced. A measurement for acquiring diffusion SI data is repeated a plurality of times with changing acquisition timing, phase variation of each measurement result is corrected, and a diffusion SI image is reconstructed from the corrected measurement results. In addition, the phase variation is calculated for every point in the space from the diffusion SI data acquired by each measurement or navigation data obtained by each measurement. The phase correction is independently performed for every point in the space.
摘要:
Water/fat separation imaging is performed by an MRI device, even if the measurement is not performed with such echo times that the phases of water and fat signals become in-phase or out-of-phase. A determination is made as to which of two obtained separation images is a water image or a fat image. Two water/fat ratio maps are calculated from two original images obtained with such two echo times that phase differences of water and fat signals do not become positive and negative values, and do not becomes integral multiples of π. Two phase maps are calculated from the two water/fat ratio maps and are combined to calculate two minimum phase difference maps showing minimum spatial phase difference. From dispersion in differential maps obtained by spatially differentiating the minimum phase difference maps, a correct minimum phase difference map is determined, and is used to perform phase correction of the original image.
摘要:
In the diffusion-weighted imaging, amounts of distortion and amounts of phase offset of k-space data due to a temporally changing magnetic field error induced by eddy currents and vibrations associated with application of a diffusion-weighted gradient magnetic field pulse are corrected with good precision to improve image quality. Characteristic data for correcting distortion of k-space data are calculated for every position in the slice direction as peak shifts of projections observed between the cases of applying and not applying an MPG pulse. As the characteristic data, amounts of distortion in the read-out direction and the phase encoding direction and phase offset amounts in a slice plane are calculated.
摘要:
B1 distribution is calculated in a short time with a high degree of precision, and a high quality image is obtained. In the RF shimming for irradiating electromagnetic waves using an RF coil having multiple channels, the absolute values of subtraction images between multiple reconstructed images are used to calculate a transmitting sensitivity distribution which is necessary for calculating inter-channel phase difference and amplitude ratio of RF pulses provided to the respective channels. Those multiple reconstructed images are obtained by executing the imaging sequence after applying a prepulse at different flip angles respectively. Assuming an image obtained with a minimum flip angle as a reference image, for instance, the subtraction images are created between the reference image and the other respective images. It is also possible that multiple subtraction images being obtained are divided by one another, and the transmitting sensitivity distribution is created on the basis of the division result.
摘要:
An object of the present invention is to provide a measuring technique which allows in the MRS measurement to suppress with a high degree of precision, incorporation of a signal of unwanted compounds which hinders measurement of a measurement object signal, independent of an imaging object region and the measurement object signal, thereby obtaining a stable and favorable signal spectrum. In the MRS measuring sequence, a spectrum selective inversion RF pulse, having a narrow band characteristic for selectively inverting only a signal peak of a compounds to be suppressed, and phase dispersion-refocusing GC pulses are applied at least one of before and after a region selective RF pulse. This MRS measuring sequence is repeated while changing the echo time TE at predetermined intervals, and nuclear magnetic resonance signals being obtained by the repetition are integrated. The amount of the spectrum selective inversion RF pulse to be applied may be changed according to the echo time TE.
摘要:
The present invention provides an image processing technique which enables various contrast control, by quantitatively handling a degree of phase enhancement in a contrast control as a post-processing of the image reconstruction. A complex operation is performed on each pixel value of a complex image obtained by an MRI, thereby generating an image with desired contrast. Intensity is controlled by increasing or decreasing the argument of the pixel value of each pixel by a constant amount, and the degree of phase enhancement is controlled by multiplying the phase (argument) of each pixel by a constant.
摘要:
An object of the invention is to obtain a magnetic resonance spectroscopic image to which the MAC summation is applied with high accuracy and in short time, even though a phase characteristic distribution of the MAC has a spatial non-uniformity, in the MRSI measurement using a magnetic resonance imaging apparatus provided with a MAC. Using a non-water-suppressed image signal with high SNR, obtained in the non-water-suppressed measurement (a reference measurement) without water suppression, a correction value for correcting the phase distortion for the MAC summation is calculated on each pixel in each coil. After correcting a phase on each pixel in each coil of a main-scan image signal measured under suppressing water (water-suppressed image signal) using the corrective value, signal adding operation (summation) is performed. Then, a phase correction in a spectrum-axis is to be performed on the summed spectrum signal.
摘要:
A magnetic resonance imaging system capable of conducting spectroscopic imaging with an improved SNR without degrading the spatial resolution includes edge-preserving filter processing means for spectroscopic imaging. The edge-preserving filter processing means executes processing including the steps of calculating spectral similarity in spatial neighborhoods (spatially neighboring voxels) at each voxel in spectroscopic imaging data, calculating a spectral weight according to the spectral similarity, and conducting weighted smoothing for compounding spectra of spatial neighborhoods (spatially neighboring voxels) according to the spectral weight.