Submarine seismic monitoring apparatus and system based on submarine internet of things

    公开(公告)号:US11327186B2

    公开(公告)日:2022-05-10

    申请号:US16603043

    申请日:2018-09-27

    Abstract: The present invention discloses a submarine seismic monitoring apparatus and system based on the submarine Internet of things. A sea surface buoy network device and a submarine network device in the monitoring apparatus are connected by using an anchor system; the submarine network device and a submarine seismic detection device are connected by using a submarine photoelectric composite cable; there are one or more submarine seismic detection devices; the sea surface buoy network device includes a satellite transceiver apparatus, an Internet of things platform server, a network time server, and an autonomous energy supply apparatus; the submarine network device includes a photoelectric separation cabin, a submarine server, a bottom anchor weight block, and a mechanical releaser; and the submarine seismic detection device includes multiple submarine seismometer network nodes, where the multiple submarine seismometer network nodes are successively connected in series end to end by using the submarine photoelectric composite cable. The apparatus and system in the present invention not only can be used for submarine structure detection, but also can be used for earthquake disaster and tsunami warning, and can implement autonomous energy supply, long timing, and unattended operation.

    METHOD FOR PRODUCING DUST-REDUCING AND DUST-ABSORBING MATERIAL FROM NONMETALLIC MINERAL AND RAW MATERIAL FROM CEMENT PLANT

    公开(公告)号:US20210371334A1

    公开(公告)日:2021-12-02

    申请号:US17188087

    申请日:2021-03-01

    Abstract: A method for producing a dust-reducing and dust-absorbing material from a nonmetallic mineral and a raw material from a cement plant. The method includes calcining the limestone block, to obtain quicklime; cooling the quicklime at ambient temperature, drying and pulverizing the quicklime, to obtain a first powder essentially consisting of a quicklime powder and a calcium carbonate powder; fully drying and grinding a nonmetallic mineral, to obtain a nonmetallic mineral powder; mixing the first powder and the nonmetallic mineral powder, stirring to be uniform, to obtain a mixture, and ball milling the mixture, to obtain a nano-powder; adding a dust-absorbing material to the nano-powder, adding water and mixing, and pouring the resulting mixture into a mold, and stoving; and air drying the resulting mixture, to obtain a cavernous dust-reducing and dust-absorbing material.

    CT lymph node detection system based on spatial-temporal recurrent attention mechanism

    公开(公告)号:US11158048B2

    公开(公告)日:2021-10-26

    申请号:US16957305

    申请日:2019-10-21

    Abstract: The present disclosure discloses a CT lymph node detection system based on a spatial-temporal recurrent attention mechanism and specifically relates to the field of medical image analysis technologies. Based on a deep convolutional neural network and a recurrent attention mechanism, the present disclosure can construct an attention feature map adaptive to a lesion size in a slice direction and a spatial direction of a lymph node CT sequence. Firstly, a high-level spatial feature corresponding to the lymph node CT image is extracted by use of a pre-trained convolutional network; secondly, a recurrent attention mechanism based on a Gaussian Kernel Function is constructed with a slice at the center of the lymph node as a reference in a spatial domain; based on this, a temporal (slice direction) attention mechanism based on a Gaussian Mixture Model is performed; in addition, a predicted attention position is constrained based on the prior information of position distribution of the lymph node in the CT slice sequence; finally, in combination with the high-level features extracted by the two attention methods, the recurrent neural network performs classification to obtain a lymph node detection result.

    METHOD OF MANUFACTURING PIEZOELECTRIC THIN FILM RESONATOR ON NON-SILICON SUBSTRATE

    公开(公告)号:US20210050836A1

    公开(公告)日:2021-02-18

    申请号:US16978950

    申请日:2019-05-05

    Abstract: Disclosed is a method of manufacturing a piezoelectric thin film resonator on a non-silicon substrate, including the following steps: depositing a copper thin film on a silicon wafer; coating photoresist on the copper thin film to perform photoetching so as to remove photoresist in an air gap region under the piezoelectric thin film resonator to be disposed; electroplating-depositing a copper layer, and removing photoresist to obtain a stepped peel sacrifice layer; coating polyimide and performing imidization by heat treatment, making a sandwich structure of the piezoelectric thin film resonator above the polyimide layer; performing etching for the polyimide layer in a region not covered by the piezoelectric thin film resonator by oxygen plasma; placing the obtained device into a copper corrosion solution to dissolve the copper around and under the piezoelectric thin film resonator, attaching a drum coated with polyvinyl alcohol glue onto the piezoelectric thin film resonator, releasing and peeling it from the silicon wafer and then transferring it to a desired non-silicon substrate; washing the drum with hot water to separate the drum from the piezoelectric thin film resonator so as to complete the manufacturing process.

    ANCHOR BOLT LENGTH DETERMINATION METHOD BASED ON MONITORING OF ROOF ROCK STRATUM HORIZONTAL EXTRUSION FORCE

    公开(公告)号:US20210018315A1

    公开(公告)日:2021-01-21

    申请号:US17043778

    申请日:2019-05-14

    Abstract: An anchor bolt length determination method based on monitoring of a roof rock stratum horizontal extrusion force includes drilling a borehole in the middle of a roadway roof to determine a surrounding rock fracturing scope by a borehole television. The method includes selecting the number and locations of horizontal extrusion force measuring points according to the surrounding rock fracturing scope. The method includes monitoring and recording a change of the horizontal extrusion force over time in the borehole by a device for monitoring a roof rock stratum horizontal extrusion force. The method includes selecting a location with the largest horizontal extrusion force as a center of a anchoring segment of an anchor bolt to determine a distance between the anchoring center and the roof. The method includes calculating a total length of the anchor bolt.

    DEVICE AND METHOD FOR ANCHOR BOLT (CABLE) SUPPORTING STRUCTURE TEST AND ANCHORING SYSTEM PERFORMANCE COMPREHENSIVE EXPERIMENT

    公开(公告)号:US20210003490A1

    公开(公告)日:2021-01-07

    申请号:US16976163

    申请日:2019-12-19

    Abstract: The present disclosure provides a device and a method for an anchor bolt (cable) supporting structure test and an anchoring system performance comprehensive experiment, and relates to the technical field of anchoring tests. The device includes a gantry, a loading mechanism, a test mechanism and a test piece, wherein the gantry includes a base and an operation platform; the loading mechanism includes a loading frame, a chuck, a surrounding rock force loading oil cylinder and a hollow drawing oil cylinder; the test mechanism includes a load, a displacement and an acoustic emission and other monitoring mechanisms, and the test piece includes a rock test piece, an anchor bolt (cable), an anchor net, and the like; the loading mechanism and the hollow drawing oil cylinder are disposed on the base, and a torsion motor and an anchor bolt drill are disposed on the operation platform, wherein the rock test piece is placed between bearing plates, one end of the anchor bolt (cable) is fixed by the chuck or anchored into the rock test piece, and the other end of the anchor bolt (cable) passes through the hollow drawing oil cylinder. The device is capable of not only testing mechanical properties of the anchor bolt (cable) and an anchoring member, but also realizing simulation of a stress environment of “five sides loaded and one side non-loaded” so as to perform a surrounding rock drilling response or anchoring system performance comprehensive experiment.

Patent Agency Ranking