Abstract:
A clutch mechanism of a powered sliding device for a vehicle sliding door comprises a swingable member held at a neutral position by means of resilient force of a return spring, an output gear fixed to an output shaft of a motor, first gears rotatably supported to the swingable member and engaged with the output gear, second gears rotatably supported to the swingable member and brought into contact with the first gears with predetermined frictional resistance, respectively, rack members fixed to the base plate and engaged with the second gears, respectively, a wire drum connected to the sliding door through a wire cable, a drum gear integrally rotated with the wire drum. When the first gears and the second gears are rotated by the motor, the swingable member is rotated due to the engagements of the second gears and the rack members against the resilient force of the return spring so that one of the first gears is engaged with the drum gear. When the motor is not energized, the return spring returns the swingable member to the neutral position.
Abstract:
A drive of a sliding door of a motor vehicle, comprising an electric drive unit, a drive cable, a guide for the drive cable, the sliding door being movable relative to a body by means of the drive cable, and a cable deflection having a deflection wheel which is rotatably mounted in the cable deflection, wherein a fastening means for the cable deflection can be used as an adjustment means for the deflection wheel.
Abstract:
Disclosed are alternate embodiments of various components of a barrier operator system. and methods of operation, including of the mechanical drive subsystem with segmented and self-locking rail unit, rail mounting supports, belt and chain drive tensioning, and drive assembly carriage and interface; the electronics and software routines for controlled operation of the various barrier operator functions; wall console communications with the barrier operator; encryption and decryption of access codes; establishment and monitoring of travel limits and barrier speed and force profiles; thermal protection of barrier operator drive motors; and establishment and control of communications from the barrier operator to accessories by way of a wireless adapter.
Abstract:
Disclosed are alternate embodiments of various components of a barrier operator system. and methods of operation, including of the mechanical drive subsystem with segmented and self-locking rail unit, rail mounting supports, belt and chain drive tensioning, and drive assembly carriage and interface; the electronics and software routines for controlled operation of the various barrier operator functions; wall console communications with the barrier operator; encryption and decryption of access codes; establishment and monitoring of travel limits and barrier speed and force profiles; thermal protection of barrier operator drive motors; and establishment and control of communications from the barrier operator to accessories by way of a wireless adapter.
Abstract:
When a main switch (82) is in an on-state, a controller (80) allows an electric motor (41) to drive a sliding door to open and close an opening, and when the main switch (82) is in an off-state and a half latch switch (66) is in an on-state, the controller (80) performs a braking control to allow the electric motor (41) to generate a braking force. When the main switch (82) is in the on-state, the sliding door can be opened and closed automatically. When the main switch (82) is in the off-state and the sliding door is closed manually, the improperly-closed state detecting switch is switched on before a full-latch state, the controller performs a braking control of the driving source. In this manner, damage to components caused by the inertial force of the driving source which results from an abrupt stop of the opening and closing unit can be certainly prevented without enhancing the rigidity of a casing, etc.
Abstract:
The disclosure is directed to motorized closure assembly, comprising: an opening frame configured to fit around the opening; a substantially rectangular closure slab having a closure slab frame configured to surround the substantially rectangular closure slab and sealingly fit within the opening frame; and a motorized driver, wherein the motorized driver is entirely embedded within the closure slab frame or within a combination of the closure slab frame and the opening frame, the motorized driver configured to slidably move the slab between an open position and a closed position.
Abstract:
Disclosed are alternate embodiments of various components of a barrier operator system. and methods of operation, including of the mechanical drive subsystem with segmented and self-locking rail unit, rail mounting supports, belt and chain drive tensioning, and drive assembly carriage and interface; the electronics and software routines for controlled operation of the various barrier operator functions; wall console communications with the barrier operator; encryption and decryption of access codes; establishment and monitoring of travel limits and barrier speed and force profiles; thermal protection of barrier operator drive motors; and establishment and control of communications from the barrier operator to accessories by way of a wireless adapter.
Abstract:
The disclosure is directed to motorized closure assembly, comprising: an opening frame configured to fit around the opening; a substantially rectangular closure slab having a closure slab frame configured to surround the substantially rectangular closure slab and sealingly fit within the opening frame; and a motorized driver, wherein the motorized driver is entirely embedded within the closure slab frame or within a combination of the closure slab frame and the opening frame, the motorized driver configured to slidably move the slab between an open position and a closed position.
Abstract:
Disclosed are alternate embodiments of various components of a barrier operator system. and methods of operation, including of the mechanical drive subsystem with segmented and self-locking rail unit, rail mounting supports, belt and chain drive tensioning, and drive assembly carriage and interface; the electronics and software routines for controlled operation of the various barrier operator functions; wall console communications with the barrier operator; encryption and decryption of access codes; establishment and monitoring of travel limits and barrier speed and force profiles; thermal protection of barrier operator drive motors; and establishment and control of communications from the barrier operator to accessories by way of a wireless adapter.