Abstract:
In a low NOx boiler of the present invention, a high-temperature reductive combustion zone is provided to an upper portion of a rectangular combustion chamber, and a second-step combustion zone is provided to a middle stage of the combustion chamber. A wall provided below the second-step combustion zone is tapered to narrow the combustion chamber, with a taper angle of approximately 35° or so, relative to a vertical line. An ash discharge port is provided to a furnace bottom portion, and a gas outlet port communicated with a rear pass is provided to a lower side face of the second-step combustion zone. This rear pass is connected with a further post-treatment step, via a super-heater tube and an economizer.
Abstract:
The present application provides a tangentially fired boiler. The tangentially fired boiler may include a combustion chamber and an overfire air system positioned about the combustion chamber. The overfire air system may include a number of overfire air windboxes positioned in a horizontal orientation.
Abstract:
An oxy-combustion boiler unit is disclosed which includes a furnace for combusting fuel and for emitting flue gas resulting from combustion. The furnace has first, second and third combustion zones, and an air separation unit for separating oxygen gas from air and providing a first portion of the separated oxygen to a first oxidant flow, a second portion to a second oxidant flow, and a third portion of the separated oxygen gas to the first, second, and third zones of the furnace. A controller can cause the separated oxygen gas to be distributed so that the first and second oxygen flows have a desired oxygen content, and so that the first, second, and third zones of the furnace receive a desired amount of oxygen based on a combustion zone stoichiometry control.
Abstract:
This disclosure may relate generally to systems, devices, and methods for a injecting a compound through a sootblower, burner or other utility furnace hardware, such that the compound can be delivered to targeted areas on the inside of a utility furnace. In one embodiment, the compound is a chemical for improving environmental controls. In another embodiment, the compound is a fuel. In that embodiment, compound can facilitate retrofitting a burner to a dual fired utility furnace. In another embodiment, the compound is a chemical for removing slag from the furnace.
Abstract:
The present invention relates generally to the field of emission control equipment for boilers, heaters, kilns, or other flue gas-, or combustion gas-, generating devices (e.g., those located at power plants, processing plants, etc.) and, in particular to a new and useful method and apparatus for reducing or preventing the poisoning and/or contamination of an SCR catalyst. In another embodiment, the method and apparatus of the present invention is designed to protect the SCR catalyst. In still another embodiment, the present invention relates to a method and apparatus for increasing the service life and/or catalytic activity of an SCR catalyst while simultaneously controlling various emissions.
Abstract:
The present invention relates generally to the field of emission control equipment for boilers, heaters, kilns, or other flue gas-, or combustion gas-, generating devices (e.g., those located at power plants, processing plants, etc.) and, in particular to a new and useful method and apparatus for reducing or preventing the poisoning and/or contamination of an SCR catalyst. In another embodiment, the method and apparatus of the present invention is designed to protect the SCR catalyst. In still another embodiment, the present invention relates to a method and apparatus for increasing the service life and/or catalytic activity of an SCR catalyst while simultaneously controlling various emissions.
Abstract:
A method of operating a pyrolysis heater for reduced emissions of NOx and carbon monoxide. One or more wall burners, typically premix burners, are operated with more excess oxidant gas than one or more of the floor or hearth burners, which are typically non-premix burners. The invention takes advantage of different NOx emissions characteristics from different types of burners.
Abstract:
The present invention relates generally to the field of emission control equipment for boilers, heaters, kilns, or other flue gas-, or combustion gas-, generating devices (e.g., those located at power plants, processing plants, etc.) and, in particular to a new and useful method and apparatus for reducing or preventing the poisoning and/or contamination of an SCR catalyst. In still another embodiment, the present invention relates to a method and apparatus for increasing the service life and/or catalytic activity of an SCR catalyst while simultaneously controlling various emissions. In yet another embodiment, the present invention relates to a method and apparatus for controlling, mitigating and/or reducing the amount of selenium contained in and/or emitted by one or more pieces of emission control equipment for boilers, heaters, kilns, or other flue gas-, or combustion gas-, generating devices (e.g., those located at power plants, processing plants, etc.).
Abstract:
A method for of reducing the acidity and lowering the acid dewpoint of flue gas, the method steps including partially combusting the fuel in a first stage to create a reducing environment; maintaining the reducing environment for a sufficient time period such that reducible acids are reduced to achieve a desirable acidity concentration in the flue gas; and combusting the remainder of the fuel and combustion intermediates in a second stage with oxidizing environment; thereby decreasing the acidity and lowering the acid dewpoint of the flue gas by reducing the acid concentration of the gas.
Abstract:
A method for reducing nitrogen oxide emissions in oxyfuel combustion, which method comprises supplying in a furnace (11) of a circulating fluidised bed boiler (10) at least one primary gas flow (15) and at least one secondary gas flow (16), which both have been produced by mixing oxygen and circulated flue gas together. The oxygen content of the primary gas (15) is adjusted such that a reducing zone (I) is formed at the bottom of the furnace, in which zone nitrogen oxides are reduced to nitrogen. The oxygen content of the secondary gas is adjusted such that above the reducing zone (I) is formed an oxidising zone (II), in which zone combustion is completed.