Abstract:
A method of determining moisture content of a composite material includes providing composite material standards with moisture content, collecting infrared spectra on the composite material standards, calibrating the infrared spectra to the moisture content, providing a composite material and predicting moisture content of the composite material based on the infrared spectra and the composite material standards.
Abstract:
A spectroscopic method and system to identify a biofilm of a microorganism. A sample containing a sample microorganism is irradiated with substantially monochromatic radiation. A Raman data set is obtained based on radiation scattered from the irradiated sample. A database is searched in accordance with the Raman data set in order to identify a known Raman data set from the database. The database contains a plurality of known Raman data sets where each known Raman data set is associated with a known sessile form of a corresponding known microorganism. A sessile form of the sample microorganism is identified based on the known Raman data set identified by the searching.
Abstract:
A kernel-based method determines the similarity of a first spectrum and a second spectrum. Each spectrum represents a result of spectral analysis of a material or chemical and comprises a set of spectral attributes distributed across a spectral range. The method calculates a kernel function which makes use of the shape of the spectral response surrounding a spectral point. This is achieved by comparing the value of an spectral attribute in a spectrum and each of a set of neighbouring spectral attributes within a window around the spectral attribute. Weighting values can be applied to calculations when deriving the kernel function. The weighting values can assign different degrees of importance to different regions of the spectrum. The method can be used to: classify unknown spectra; predict the concentration of an analyte within a mixture; database searching for the closest match using a kernel-derived distance metric; visualisation of high-dimensional spectral data in two or three dimensions.
Abstract:
Methods of characterizing and measuring particulate accumulation in a family of particulate filters (10) are disclosed. The disclosure can be applied to diesel, gasoline and natural gas fueled engines, fluid streams bearing dust, and chemical and biological substances such as may be found in laboratory fluids, for example, air. In one embodiment, the disclosure is directed to measuring diesel particulate accumulation in a family of diesel particulate filters. The methods include measuring calibration complex terahertz transmission spectra (PC(f)) of at least a portion (17) of at least one particulate or diesel particulate filter in the family for different known particulate or diesel particulate amounts (ADP). The method also involves performing a partial least squares (PLS) analysis on the calibration complex terahertz transmission spectra to establish a calibration relationship between the complex terahertz transmission spectra and the particulate or diesel particulate amounts. The complex transmission spectrum of a subject particulate filter or diesel particulate filter having an unknown amount of particulate or diesel particulate accumulation is then determined and compared to the linear calibration relationship to establish a measured amount of particulates or diesel particulates. The methods include using a terahertz (THz) system (100) to obtain the complex terahertz transmission spectra for the calibration and subject particulate or diesel particulate filters.
Abstract:
Disclosed is a method for the real time measurement of acrylamide in a food product. Wavelength emission data is collected from a food product. The same food product is tested off-line in an analytical laboratory for levels of acrylamide pre-cursors or acrylamide. The wavelength emission data is then correlated with the off-line laboratory data.
Abstract:
A method of determining a coating weight and/or amount of a conversion coating on a metallic substrate including making near-IR spectra of a series of coating weight standards on an appropriate substrate material to match sample material in question, pre-processing the data to prepare it for multivariate calibration methods, performing the multivariate calibration, saving the calibration model in the hand-held near-IR device in an appropriate format, and using the calibration model to predict sample material in question from their near IR spectra.
Abstract:
A method is described for assessing at least one characteristic of a fluid held in a container that utilizes visible—near infrared (VIS-NIR) spectroscopy in combination with chemometrics. A method is also provided for calibrating VIS-NIR analyser(s) operating in transflectance mode for one or more characteristics of a fluid.
Abstract:
A visible/near-infrared spectrometry and its device for determining the components of a sample and the characteristics of the components of the sample by using visible light and/or near-infrared light in the wavelength range from 400 nm to 2500 nm. This spectrometry and device enable measurement that has been conventionally difficult, including high-accuracy determination of many components, detection of components present in ultra-low concentrations, and real-time determination of component characteristics, including determination of the structure or function of bio-macromolecules and their variations. The spectrum of a sample is measured while exposing the sample to water-activating perturbations (WAP), thereby causing the response spectrum to change, and by detecting transitions of the response spectrum. With this, by conducting spectrum analysis and/or multivariate analysis, the components of the sample and/or the characteristics of the components can be determined.
Abstract:
A system for performing spectral microanalysis delivers analysis results during the course of data collection. As spectra are collected from pixels on a specimen, the system periodically analyzes the spectra to statistically derive underlying spectra representing proposed specimen components, wherein the derived spectra combine in varying proportions to result (at least approximately) in the measured spectra at each pixel. Those pixels having the same dominant proposed component, and/or which contain at least approximately the same proportions of the proposed components, may then have their measured spectra combined (i.e., added or averaged). These spectra may then be cross-referenced via reference libraries to identify the components actually present. During the foregoing analysis, the measured spectra are preferably condensed, as by reducing the number of energy channels/intervals making up the measured spectra and/or by combining the measured spectra of adjacent pixels, to reduce the size of the data cube and expedite analysis results.
Abstract:
A process for measuring the NIR spectrum of a sample using a demountable NIR transmission cell of pathlength 2.5 mm or less, said process comprising: (a) measuring the etalon fringes that arise when NIR light passes through the NIR cell in the absence of a liquid sample, (b) using this to calculate the pathlength of the NIR cell (c) introducing the sample to be analyzed in to the NIR cell, and (d) measuring the NIR spectrum of the sample.