Abstract:
Provided is a broadband frequency detector, more particularly, to a frequency detector detecting all the signals for guiding the safe vehicle operation, and radar signals for determining vehicle speeds. The broadband frequency detector comprises: a horn antenna configured to receive signals having specific frequencies; a first amplifier configured to receive the signals having specific frequencies from the horn antenna; a mixer unit configured to receive signals from the first amplifier, wherein the signals are low noise amplified therein; and a second amplifier, arranged in parallel with the amplifier, for transferring signals to the mixer unit after low noise amplifying the signal received from the horn antenna, wherein the second amplifier includes a transistor and a first microwave circuit unit for matching the impedance of the horn antenna and the impedance of the transistor.
Abstract:
A system for reception of electromagnetic waves in spectrum in which interference occurs comprising at least one transmitter; at least one receiver configured to receive the received signal; a first memory portion configured to store data relating to a point target response; a spectrum estimator configured to estimate the frequencies at which interfering signals occur; at least one processor configured to generate an estimation of the interfering signals at the frequencies estimated by the spectrum estimator; a second memory portion operatively connected to the at least one processor configured to store the estimation of the components of the interfering signals; the at least one processor configured to substantially reduce or eliminate radio frequency interfering signals from the received signal utilizing the point target response and the estimation of the interfering signals; and a method to substantially reduce or eliminate radio frequency interfering signals from for image data.
Abstract:
There are provided an ultra-wideband radar imaging system comprising an antenna with at least one receiver and a plurality of transmitters operating in multi-static mode, method of operating thereof and volume visualization unit to be used in conjunction with the multi-static ultra-wideband radar imaging system. The method comprises: receiving by said at least one receiver a plurality of signals, each respectively representing return data in a channel associated with the receiver and one of the transmitters among said plurality of transmitters, thus giving rise to a plurality of spatial data channels; among said plurality of spatial data channels selecting data channels for further processing; and providing volume visualization by processing data corresponding merely to the selected spatial data channels.
Abstract:
Systems and methods involve generating a baseband signal, up-converting the baseband signal to a radar signal frequency, filtering a lower sideband of the up-converted signal, and transmitting the filtered up-converted signal. Systems and methods also involve receiving a return signal, down-converting the return signal using a signal having a frequency offset from the up-converted signal, filtering the upper sideband of the down-converted return signal, and producing a baseband return signal.
Abstract:
An ultra-wideband (UWB) radar imaging system is carried by a mobile platform—such as an aircraft—the UWB radar imaging system including multiple UWB radar sensors; the UWB radar sensors transmitting a high resolution radar signal using an array of power amplifiers and corresponding polarizing antenna arrays to form spatial power combining and beam forming from each UWB radar sensor; and receiving reflections using an array of low noise amplifiers and corresponding antenna arrays to form spatial power combining from the reflections at each. UWB radar sensor; processing the radar sensor data from the UWB radar sensors by an imaging processor for detecting a ballistic projectile; and providing trajectory information of a detected ballistic projectile on a display. Trajectory modeling enables fusing the radar sensor data with optical or thermal imaging data and the trajectory information to display a probable source location of the detected ballistic projectile.
Abstract:
An ultra-wideband (UWB) radar imaging system is carried by a mobile platform—such as an aircraft—the UWB radar imaging system including multiple UWB radar sensors; the UWB radar sensors transmitting a high resolution radar signal using an array of power amplifiers and corresponding polarizing antenna arrays to form spatial power combining and beam forming from each UWB radar sensor; and receiving reflections using an array of low noise amplifiers and corresponding antenna arrays to form spatial power combining from the reflections at each. UWB radar sensor; processing the radar sensor data from the UWB radar sensors by an imaging processor for detecting a ballistic projectile; and providing trajectory information of a detected ballistic projectile on a display. Trajectory modeling enables fusing the radar sensor data with optical or thermal imaging data and the trajectory information to display a probable source location of the detected ballistic projectile.
Abstract:
A moving ground penetrating radar is comprised of multiple transmitters and receivers with multiple, e.g., Horizontal and Vertical, polarizations to detect buried targets with standoff capability. Novel signal and imaging techniques are used to form high quality radar imagery with low artifacts that are due to various sources of self-induced resonances, e.g., transmitter-receiver coupling, calibration errors, and motion errors in the multi transmitter/receiver channels of the radar system. The irradiated target area image is formed via exploiting both the spatial diversity of the physical multi-transmitter and multi-receiver array and synthetic aperture/array that is generated by the motion of the platform that carries the radar system. The images that are formed from the multiple polarizations are combined to remove surface targets/clutter and, thus, enhance signatures of buried targets.
Abstract:
Various implementations described herein are directed to a common burst for pulse compression radar. In one implementation, a method may include determining a first burst for a first range using a pulse compression radar system, where the first burst comprises one or more first transmission frames. The method may also include determining a second burst for a second range using the pulse compression radar system, where the second burst comprises one or more second transmission frames. The method may further include transmitting a common burst for the first range and the second range using the pulse compression radar system, where the common burst includes the one or more first transmission frames and the one or more second transmission frames.
Abstract:
A stacked-waveguide substrate includes: a body configured to include a first dielectric-substrate, a second dielectric-substrate, and a third dielectric-substrate which are stacked in this order; a first conductor-pattern configured to be formed on a bottom surface of the first dielectric-substrate; a second conductor-pattern configured to be formed on a top surface of the third dielectric-substrate in a position corresponding to the first conductor-pattern; a first conductor-film configured to be located at an interface between the first dielectric-substrate and the second dielectric-substrate, and to have a first opening which faces the first conductor-pattern; a second conductor-film configured to be located at an interface between the second dielectric-substrate and the third dielectric-substrate, and to have a second opening which faces the second conductor-pattern; a first wiring line configured to cross the first opening to the first conductor-pattern; and a second wiring line configured to cross the second opening to the second conductor-pattern.
Abstract:
A forward-looking proximity sensor comprises one or more antenna elements mounted on a carrier platform in a lateral direction of said carrier platform, said antenna elements being configured to transmit a modulated signal in a direction of travel of said carrier platform, said antenna elements receiving a reflected portion of said modulated signal from said target; and a processing unit configured to generate said modulated signal based on a baseband signal and a carrier signal, said processing unit further determining characteristics of said target based on said reflected portion of said modulated signal, said characteristics of said target indicating a range of said target and at least one feature of said target.