Abstract:
A device, method and system are provide which permits the methodology used to make the position determination to change dynamically in connection with achieving a position fix of a desired accuracy.
Abstract:
The present invention has, as a first object, an autonomous underwater vehicle equipped for the acquisition of the gravimetric and magnetic gradient near the seabed, characterized in that it comprises: —at least one gravimetric gradiometer; —at least one magnetic gradiometer. In particular, said autonomous equipped underwater vehicle allows underwater explorations as far as 3,000 m. A second object of the present invention relates to an analysis method of the geophysical characteristics of the subsoil, comprising the acquisition of the gravimetric and magnetic gradient in an underwater environment characterized by the following phases: —use of an autonomous equipped underwater vehicle according to the present invention; —immersion of said vehicle to the proximity of the seabed; —navigation along a programmed route; —acquisition and storage of the data collected by said gradiometers and said instruments with correlation to the geographic measurement point; —recovery of the data collected and use thereof for geophysical analysis of the subsoil.
Abstract:
Embodiments of the present invention provide a method to produce a modulation signal comprising combining at least two modulation signals, for example, BOCs or derivatives thereof, having portions (chip or a number of chips) thereof with respective relative phases or states ({++,−−} and {+−,−+}) selected such that the average of a plurality of said portions at least reduces cross spectral terms of the composite complex spectrum of said at least two modulation signals.
Abstract:
A computer-implemented system and method for triggering events based on user location with respect to zones of influence is described. One or more zones of influence each having a plurality of points of geolocational data are defined. One or more user events are associated with each of the zones of influence. A location of a wireless device is identified based on geolocational data obtained by the wireless device. The geolocational data of the wireless device is compared with the geolocational data for one or more of the zones of influence. The user events associated with one such zone of influence are triggered when the geolocational data of the wireless device correlates with at least one of the points of geolocational data for that zone of influence.
Abstract:
A switched emergency call (e.g., a 911 call, an alarm company call) forwarded by a telematics call center is converted into a session initiation protocol (SIP) packetized phone call at the call center, and routed over an IP network, for presentation to an emergency services gateway, which connects to a selective router via dedicated circuits, gaining full access to the Enhanced 911 network. This provides a PSAP receiving a call from a telematics call center or other call center with all features available in an Enhanced 911 network, e.g., callback number of the 911 caller, and location of the 911 caller. Location of the caller is provided using a VoIP positioning center (VPC), queried from the call center. In this way, the switched emergency call is converted into a SIP packetized phone call and routed without further passage through the public switched telephone network (PSTN).
Abstract:
A switched emergency call (e.g., a 911 call, an alarm company call) forwarded by a telematics call center is converted into a session initiation protocol (SIP) packetized phone call at the call center, and routed over an IP network, for presentation to an emergency services gateway, which connects to a selective router via dedicated circuits, gaining full access to the Enhanced 911 network. This provides a PSAP receiving a call from a telematics call center or other call center with all features available in an Enhanced 911 network, e.g., callback number of the 911 caller, and location of the 911 caller. Location of the caller is provided using a VoIP positioning center (VPC), queried from the call center. In this way, the switched emergency call is converted into a SIP packetized phone call and routed without further passage through the public switched telephone network (PSTN).
Abstract:
Methods and systems for global navigation satellite system configuration of wireless communication applications may comprise determining a location of a wireless communication device (WCD) comprising a medium Earth orbit (MEO) radio frequency (RF) path and a low Earth orbit (LEO) RF path utilizing received LEO signals. A wireless function of the WCD may be configured based on the location, and may comprise a power level of WiFi circuitry in the WCD. The determined location and a transaction ID for the POS transaction may be stored utilizing a security processor. The MEO RF path may be powered down based on the determined location. The wireless function may comprise a synchronization of data on the WCD with devices in a home location. The WCD may comprise a femtocell device or a set-top box, and may be controlled by a reduced instruction set computing (RISC) central processing unit (CPU).
Abstract:
A global earth navigation satellite system may be provided. The global earth navigation satellite system may include a group of satellites including at least one inclined geosynchronous satellite disposed in at least one orbital plane distinguished based on an interval determined based on a longitudinal coordinate of the earth, and the at least one inclined geosynchronous satellite may be disposed in the at least one orbital plane at predetermined intervals, and may revolve around the earth at a predetermined inclination of satellite orbit so as to provide, over time, geometric shape change information associated with the earth, geometric shape change information associated with a low earth orbit satellite, and geometric shape change information associated with a geostationary satellite.
Abstract:
A device, method and system are provide which permits the methodology used to make the position determination to change dynamically in connection with achieving a position fix of a desired accuracy.
Abstract:
A privacy enhancement device for electronic device such as a cellular telephone. The privacy enhancement device may include a jammer which may produces false information, e.g. false information indicative of pseudo ranges. In addition, the navigation information used on the position detecting device may be locally stored versions of dynamically changing information. The navigation operation may be carried out using a Web service.