Abstract:
The present invention relates to a surveying system, comprising a rotary laser irradiation device 1 installed at a known point and used for projecting two or more fan-shaped laser beams 3 with at least one of the fan-shaped laser beams tilted and for forming a laser reference plane, a photodetection device 4, which is mounted on a mobile support member 9, for receiving the laser beam and for calculating an elevation angle at a photodetecting position, and a monitor photodetection device 11 installed at a known position within the laser reference plane, wherein the monitor photodetection device has a monitor photodetection sensor for sensing and detecting the laser beam, a storage unit for storing a reference value of the laser reference plane, an arithmetic control unit for calculating positional changes over time of the laser reference plane based on the result of photodetection by the monitor photodetection sensor and on the reference value, and a transmitting unit for transmitting the positional changes over time to the photodetection device and/or to the rotary laser irradiation device as compensation information.
Abstract:
An optical instrument system produces and analyzes images of the surrounding area. The system includes an overview lens with a symmetry axis which produces a first circular image of the surrounding area. The system also includes an observation lens which captures a second image of the surrounding area, and which is pivotal over 360° about the symmetry axis, and which is spaced apart a predetermined distance from the overview lens. The observation lens has an optical axis which is perpendicularly to the symmetry axis. The system includes an imaging optics system which reproduces the images of the surrounding area as overview image and observation image on a surface detector. A control unit controls the observation lens. An evaluation unit analyzes the images, and, for selected objects, which are detected both in the overview image and also in the observation image, determines the distance to said objects.
Abstract:
For precision grading of terrain by a dozer, the dozer blade can be automatically controlled based on measurements from a combination of a global navigation satellite system real-time kinematic mode (GNSS RTK) system and inertial sensors. At least one GNSS sensor and at least one inertial sensor are mounted on the dozer. Control algorithms are based on blade elevation and blade slope angle. During a period of GNSS RTK system outage, control of blade elevation is not available. Blade control is maintained by switching to control algorithms based on blade slope angle and blade pitch angle. Blade slope angle and blade pitch angle are controlled based on extrapolated target values of blade slope angle and blade pitch angle. The extrapolated target values of the angles are extrapolated from target values of the angles prior to the GNSS RTK system outage with the use of a distance travelled by the dozer.
Abstract:
The invention relates to a method for controlling a mobile ground working device, such as a trailing suction hopper dredger or bulldozer. The method is characterized in that it comprises at least the steps, proceeding under the control of a central computer via a digital network, of A) presetting an optimum criterion; B) collecting information relating to the current state of the ground; C) collecting information relating to the current state of the ground working device, including at least its position; and D) calculating the control of the ground working device at which the optimum criterion is minimized. Using the invented method ground can be worked with an increased efficiency compared to the known method. The invention likewise relates to a computer program comprising program instructions for having a computer perform the method, and to a computer adapted to run the computer program.
Abstract:
A method for improving haul road surface conditions comprises collecting performance data associated with at least one machine operating on a haul route and determining a rolling resistance of each of the at least one machine based on the performance data. An average rolling resistance associated with one or more portions of the haul route is determined based on the rolling resistance of each of the at least one machine. The one or more portions of the haul route are identified as irregular if the average rolling resistance of the one or more portions exceeds a threshold resistance value. A proposed modification to the irregular portion of the haul route is generated, and performance of the at least one machine is simulated based on the proposed modification. The method also includes outputting results of the simulated performance.
Abstract:
A system and method for operating a machine is disclosed. The system may include an input device configured to select from a plurality of modes of operation for the machine, the plurality of modes of operation comprising a manual mode, a remote mode, and an autonomous mode. The system may further include a controller coupled to the machine, the controller configured to place the machine in the selected mode of operation based on an input at the input device. The system may further include a transmitter configured to transmit a heartbeat signal. The system may further include a receiver configured to receive an acknowledgment signal from a remote system in response to the transmitted heartbeat signal.
Abstract:
An apparatus and method is disclosed for a wireless remotely operable unmanned compact vehicle platform for use in land management comprising a frame and providing a pair of ground engageable endless drive tracks powered by a hydraulic fluid power source. The vehicle supports working attachments on the front end by utilizing a universal working attachment coupling interface carried on a pair of loader boom structures, and the vehicle supports working attachments on the rear end by utilizing a three point hitch apparatus. Working attachments coupled to the vehicle may be powered by the hydraulic fluid power source carried on the frame. A wireless remote control apparatus allows an operator to control the vehicle at a safe distance and a wireless video system allows an operator to control the vehicle accurately. A system of autonomous operation is integrated with the vehicle for travel in complex, unstructured environments. The claimed invention also utilizes a method of operation for the wirelessly operable unmanned vehicle control system which comprises a system wherein one or more mobile transmitters can be used to control one or more vehicles individually.
Abstract:
A travel route generating method for an unmanned vehicle, which includes a condition input step of inputting a vehicle constraint condition including a vehicle width and a minimum turning radius of the unmanned vehicle, and a geometrical constraint condition including a travel route generation range in which the unmanned vehicle is to travel, an obstacle to avoid, and a position and a direction of an entrance point and an exit point; and a travel route generating step of generating a travel route such that the vehicle constraint condition and the geometrical constraint condition are satisfied, and such that a function value of a cost function having at least a magnitude of a curve and/or a rate of change in the curve as a cost element is minimized.
Abstract:
A guidance system for a mobile machine is disclosed. The guidance system may have a scanning device configured to generate a signal indicative of a lateral distance from the machine to a roadway marker, a locating device configured to determine a geographical location of the machine, and a controller in communication with the scanning device and the locating device. The controller may be configured to receive a desired lateral distance from the machine to the roadway marker, and to compare the desired lateral distance to the actual lateral distance. The controller may further be configured to implement a response to the comparison based on the geographical location.
Abstract:
A system for controlling a tool carrier and work tool from either a first remote control or a second remote control. The first remote control and the second remote control both transmit respective first and second control signals to a controller system supported on the tool carrier. The controller system is programmed to select either the first control signal or the second control signal to control operation of the tool carrier. The system may include programming to allow autonomous movement of the tool carrier between a first work zone and a second work zone. Further, the controller system may be programmed to avoid obstacles within its path and to reroute its path between the first work zone and the second work zone to avoid such obstacles.