Abstract:
Method for managing a data transmit queue, for use with a host and a network interface device. Roughly described, the host writes data buffer descriptors into a transmit descriptor queue, and the network interface device writes events to notify the host when it has completed processing of a transmit data buffer. Each of the transmit completion event descriptors notify the host of completion of a plurality of the transmit data buffers.
Abstract:
A traffic manager includes an execution unit that is responsive to instructions related to queuing of data in memory. The instructions may be provided by a network processor that is programmed to generate such instructions, depending on the data. Examples of such instructions include (1) writing of data units (of fixed size or variable size) without linking to a queue, (2) re-sequencing of the data units relative to one another without moving the data units in memory, and (3) linking the previously-written data units to a queue. The network processor and traffic manager may be implemented in a single chip.
Abstract:
In general, in one aspect, the disclosure describes an apparatus capable of queuing and de-queuing data stored in a plurality of queues. The apparatus includes a status storage device to track status for each of the plurality of queues, a status cache to track status for a subset of the plurality of queues that are undergoing processing, and a queuing engine to queue incoming data and de-queue outgoing data. The queuing engine receives and updates the status for the subset of the plurality of queues from the status cache and receives and updates the status for remaining queues from the status storage device.
Abstract:
A method and apparatus for switching a data packet between a source and destination in a network. The data packet includes a header portion and a data portion. The header portion includes routing information for the data packet. The method includes defining a data path in the router comprising a path through the router along which the data portion of the data packet travels and defining a control path comprising a path through the router along which routing information from the header portion travels. The method includes separating the data path and control path in the router such that the routing information can be separated from the data portion allowing for the separate processing of each in the router. The data portion can be stored in a global memory while routing decisions are made on the routing information in the control path.
Abstract:
A Queue Manager (QM) system and method are provided for communicating control messages between processors. The method accepts control messages from a source processor addressed to a destination processor. The control messages are loaded in a first-in first-out (FIFO) queue associated with the destination processor. Then, the method serially supplies loaded control messages to the destination processor from the queue. The messages may be accepted from a plurality of source processors addressed to the same destination processor. The control messages are added to the queue in the order in which they are received. In one aspect, a plurality of parallel FIFO queues may be established that are associated with the same destination processor. Then, the method differentiates the control messages into the parallel FIFO queues and supplies control messages from the parallel FIFO queues in an order responsive to criteria such as queue ranking, weighting, or shaping.
Abstract:
A method and apparatus for processing out-of-order processing of packets is described. In one embodiment, the method includes receiving a packet, which is in an original position relative to other packets; and attempting, by a primary processing unit, to classify and process the packet. The method also includes determining whether the packet was completely classified and processed by the primary processing unit; and upon determining that the primary processing unit completely classified and processed the packet, bypassing a secondary processing unit. The method also includes transmitting the packet onto a network, the packet being transmitted in its original position relative to the other packets.
Abstract:
A method and apparatus for switching a data packet between a source and destination in a network. The data packet includes a header portion and a data portion. The header portion includes routing information for the data packet. The method includes defining a data path in the router comprising a path through the router along which the data portion of the data packet travels and defining a control path comprising a path through the router along which routing information from the header portion travels. The method includes separating the data path and control path in the router such that the routing information can be separated from the data portion allowing for the separate processing of each in the router. The data portion can be stored in a global memory while routing decisions are made on the routing information in the control path.
Abstract:
A method for configuring service curves for managing the output port of a networking device includes the following steps. A multitude of traffic classes is defined, each traffic class being characterized by a bandwidth and a delay priority. A multitude of traffic service curves is computed, each of the plurality of traffic service curves is associated with a different one of the multitude of traffic classes. At least one of the multitude of traffic classes service curves is characterized by a shifted two-piece linear function shifted such that the service curve limits service to during a nonzero time period prior to the start of the two-piece linear function.
Abstract:
A system for buffering data received from a network comprises a network socket, a plurality of buffers, a buffer pointer pool, receive logic, and packet delivery logic. The buffer pointer pool has a plurality of entries respectively pointing to the buffers. The receive logic is configured to pull an entry from the pool and to perform a bulk read of the network socket. The entry points to one of the buffers, and the receive logic is further configured to store data from the bulk read to the one buffer based on the entry. The packet delivery logic is configured to read, based on the entry, the one buffer and to locate a missing packet sequence in response to a determination, by the packet delivery logic, that the one buffer is storing an incomplete packet sequence. The packet delivery logic is further configured to form a complete packet sequence based on the incomplete packet sequence and the missing packet sequence.
Abstract:
An apparatus for communicating with a network comprises a packet pointer pool, a queue, logic, and a network interface. The packet pointer pool has a plurality of entries that respectively point to different memory blocks. The logic is configured to pull one of the entries from the packet pointer pool. Such logic is configured to store a data packet in one of the memory blocks pointed to by the one entry and to insert the one entry into the queue. Logic is configured to pull the one entry from the queue and to retrieve the data packet from the one memory block based on the one entry. The network interface is configured to communicate the data packet with a network.