Abstract:
A solar power generation apparatus includes solar battery arrays, each of which has solar battery modules, non-isolated inverters, each of which converts direct-current power generated by one of the solar battery arrays to alternating-current power and provides the alternating-current power to a commercial power system, an earth leakage circuit breaker arranged between the non-isolated inverters and the commercial power system and connected to outputs of the non-isolated inverters in parallel, and a controller for controlling operation of the non-isolated inverters. The controller controls start-timing of the operation of at least one inverter to be different from that of another inverter. This arrangement can prevent any undesirable operation of the earth leakage circuit breaker.
Abstract:
A hybrid standby power system for producing regulated DC electrical power, a method of producing such power and a telecommunications installation that employs either the system or the method. In one embodiment, the system includes: (1) a primary power input, couplable to a primary power source, that accepts primary electrical power subject to interruption, (2) a standby power input, couplable to a standby power source, that accepts unregulated standby electrical power and (3) a power converter, couplable to at least one of the primary and standby power inputs, including a rectifier that rectifies at least one of the primary and standby electrical power to provide unregulated DC electrical power and a DC--DC converter that converts the unregulated DC electrical power into the regulated DC electrical power.
Abstract:
A power supply switching apparatus for electronic equipment including a first control circuit connected to a battery. The first control circuit monitors a power supply voltage of the battery to output a first control signal when the power supply voltage of the battery is lower than a first predetermined voltage. The first control circuit also outputs a second control signal when the power supply voltage of the battery is higher than a second predetermined voltage. A second control circuit monitors whether power is supplied from an external power supply to the electronic equipment, to generate a third control signal when the power is not supplied from the external power supply. The second control circuit generates the third control signal regardless of whether the second control signal is present, when power is supllied from the external power supply. A switching circiut section supplies power from the battery to the internal circuit when the first and third control signals are not present. The switching circuit section disconnects the battery from the internal circuit in response to the first or third control signal.
Abstract:
A power supply for maximizing the life of batteries such as but not limited to 12 volt DC batteries. Two batteries are preferably used. A timer is connected to the first battery output terminals. The timer regulates when a DC motor is turned on and off. The motor is connected to alternator connected to an output of the DC motor. The second battery is connected to and receives a charge from the alternator. An invertor outputs 115 volts at approximately 800 to approximately 1500 watts at 60HZ. The invention allows the first battery and the second battery to have an increased lifespan compared to being used separately. Embodiments for using the invention include computer set-ups, electrical golf carts, electrical car, medical devices, emergency backup power supply, and a portable canister supported container.
Abstract:
According to the present invention, an emergency power supply to be coupled to an electric power source providing an incoming AC signal may include an input/output terminal, a battery with a DC voltage, a rectifier coupled directly to the input/output terminal and connected to the battery, an inverter coupled directly to the input/output terminal and connected to the battery, and a control circuit coupled to the rectifier and the inverter so that in a first operational mode the rectifier is coupled to the battery to rectify an incoming AC signal at the input/output terminal to charge the battery and the inverter is decoupled from the battery, and in a second operational mode the inverter is coupled to the battery to invert the DC voltage to provide an outgoing AC signal at the input/output terminal and the rectifier is decoupled from the battery.
Abstract:
An uninterruptible power supply control system of for controlling power supply to an internet type apparatus, a CPU type apparatus requiring a shutdown processing and a printer type apparatus not requiring the shutdown processing. The uninterruptible power supply control system comprises an uninterruptible power supply device which is connected to a power source and arranged to be supplied with power from a battery. The uninterruptible power supply device is arranged to output a shutdown signal to the CPU type apparatus when a power service interruption occurs. The CPU type apparatus makes its shutdown processing in response to the shutdown signal. The internet type apparatus is allowed to be directly electrically connected to the battery so that the internet type apparatus is kept in an uninterrupted power supply condition. The CPU type apparatus is allowed to be electrically connected to the battery through a timer mechanism having a scheduling function so that the CPU type apparatus can be kept in the uninterrupted power supply condition. Additionally, the printer type apparatus is allowed to be electrically connected to the power source through the timer mechanism so that the printer type apparatus is prevented from largely consuming power.
Abstract:
An electrical circuit has a power source line from a battery. The power source line is divided into a primary side and a secondary side by a device, such as, for example, a diode. A high current load circuit is connected to the primary side and a lower current device, such as, for example, a display-related circuit and a capacitor are connected to the secondary side. The display-related circuit continues to receive adequate power when the battery voltage drops due to operation of the high current load circuit. In addition, a voltage detector is connected to the secondary side, where the voltage fluctuates less than on the primary side. The voltage detector controls operation of the high current load circuit. As a result, the high current load circuit can be efficiently driven.
Abstract:
A circuit disables an on-board voltage regulator when an upgrade voltage regulator is installed. The system including the voltage regulator disable circuit of the preferred embodiment comprises an on-board voltage regulator circuit, a receptacle, coupled to the on-board voltage regulator circuit, for receiving an upgrade voltage regulator module, and a disable circuit coupled to the on-board voltage regulator circuit and the receptacle, the disable circuit being activated upon insertion of the upgrade voltage regulator module to disable an output of the on-board voltage regulator circuit.
Abstract:
A communication cable used to connect a peripheral device to a computer has a first cable, a second cable and a patch unit. The first cable encloses a set of power lines and a set of data lines, and the second cable encloses a set of data lines. The patch unit includes a socket with first and second contacts. In the patch unit, the sets of data lines of the first and second cables are connected. One of the power lines is connected to the first contact, and another of the power lines is connected to the second contact. The first cable connects the patch unit with the peripheral device, and the second cable connects the patch unit with the computer. When power is applied from an external source to the first and second contacts, the power is supplied from the first and second contacts to the peripheral device.
Abstract:
A dual discharge photovoltaic module responsive to high and low loads. The module includes a first plurality of series connected, high short circuit current cells, and a second plurality of series connected, low short circuit current cells connected in series with the first plurality. A diode is connected in parallel with the second plurality of cells such that current flow through the module when the module is under low load reverse biases the diode so that the module discharges at a low current. When the module is under high load, current flow through the module forward biases the diode and bypasses the second plurality of cells so that the module discharges at a high rate. The module is particularly useful for starting and running an electric motor.