THREE-DIMENSIONAL PRINTING WITH STAINLESS STEEL PARTICLES

    公开(公告)号:US20220274173A1

    公开(公告)日:2022-09-01

    申请号:US17637477

    申请日:2019-10-23

    Abstract: Three-dimensional printing can include iteratively applying build material layers including stainless steel particles, iteratively applying a binding agent to individual build material layers to define individually patterned object layers that become adhered to one another to form a layered green body object, and sintering the layered green body object in a sintering oven. The stainless steel particles can include from about (2) wt % to about (6) wt % nickel, from about (14) wt % to about (19) wt % chromium, from about (2) wt % to about (6) wt % copper, and up to about (700) ppm carbon. Sintering can include ramping up the temperature to about (1240)° C. to about (1320)° C., pausing for about (30) minutes to about (12) hours, and ramping up the temperature to about (1350)° C. to about (1400)° C. for (10) minutes to about (6) hours.

    COLD SINTERING PROCESS FOR DENSIFICATION AND SINTERING OF POWDERED METALS

    公开(公告)号:US20220226895A1

    公开(公告)日:2022-07-21

    申请号:US17657053

    申请日:2022-03-29

    Abstract: Embodiments can relate to an improved hydroflux, additive or electroless plating assisted densification cold sintering process to densify powdered metals at lower compaction pressures and lower temperatures (e.g., 520 MPa and 140° C.). The process can involve inducing dissolution precipitation mechanisms at powder interfaces by introducing a transport phase (formed by the introduction of water during the process to suppress melting temperatures) that is not an aqueous solution. Particle interfaces in the cold sinter fuse together by the presence of the additional transport phase, thereby reducing the temperatures and pressures needed for compaction. Some embodiments involve the use of elements to form a eutectic at the desired low temperature, thereby stabilizing certain crystal structure shapes of isometric crystal systems, inducing rapid densification, and facilitating pore smoothing. Embodiments of the process can be used to generate a green compact via sintering that exhibits improved green strength.

    Variable Diffusion Carburizing Method

    公开(公告)号:US20220213584A1

    公开(公告)日:2022-07-07

    申请号:US17602605

    申请日:2020-03-26

    Abstract: A method of carburizing a powder metal part involving more than one carburizing step. In a pre-forging carburizing step, a powder metal part that is less than fully dense is carburized to establish a pre-forging carburization profile. After the pre-forging carburizing step, the powder metal part is forged so that the powder metal part is increased in density and the pre-forging carburization profile is transformed into an as-forged carburization profile. In a post-forging carburizing step following the forging step, the powder metal part is again carburized, thereby resulting in both further diffusion of carbon from the as-forged carburization profile into the powder metal part and further introduction of carbon into the powder metal part at a surface of the powder metal part.

    Additive Manufacturing of Complex Objects Using Refractory Matrix Materials

    公开(公告)号:US20220212363A1

    公开(公告)日:2022-07-07

    申请号:US17702929

    申请日:2022-03-24

    Abstract: A method for the manufacture of a three-dimensional object using a refractory matrix material is provided. The method includes the additive manufacture of a green body from a powder-based refractory matrix material followed by densification via chemical vapor infiltration (CVI). The refractory matrix material can be a refractory ceramic (e.g., silicon carbide, zirconium carbide, or graphite) or a refractory metal (e.g., molybdenum or tungsten). In one embodiment, the matrix material is deposited according to a binder-jet printing process to produce a green body having a complex geometry. The CVI process increases its density, provides a hermetic seal, and yields an object with mechanical integrity. The residual binder content dissociates and is removed from the green body prior to the start of the CVI process as temperatures increase in the CVI reactor. The CVI process selective deposits a fully dense coating on all internal and external surfaces of the finished object.

    METHOD AND DEVICE FOR PRODUCING THREE-DIMENSIONAL OBJECTS

    公开(公告)号:US20220176458A1

    公开(公告)日:2022-06-09

    申请号:US17682226

    申请日:2022-02-28

    Applicant: Arcam AB

    Inventor: Anders Snis

    Abstract: A method for producing three-dimensional objects layer by layer using a powdery material which can be solidified by irradiating it with at least two electron beams, said method comprises a pre-heating step, wherein the pre-heating step comprises the sub-step of scanning a pre-heating powder layer area (100) by scanning a first electron beam in a first region (I) and by scanning a second electron beam in a second region (II) distributed over the pre-heating powder layer area (100), wherein consecutively scanned paths are separated by, at least, a security distance (ΔY), said sub-step further comprising the step of synchronising the preheating of said first and second electron beams when simultaneously preheating said powder material within said first and second regions respectively, so that said first and second electron beams are always separated to each other with at least a minimum security distance (ΔX).

    SINTERED SLIDING MEMBER AND METHOD FOR PRODUCING SAME

    公开(公告)号:US20220145437A1

    公开(公告)日:2022-05-12

    申请号:US17434176

    申请日:2020-04-24

    Abstract: A heat-resistant sintered sliding member according to the present invention has a structure in which a lubrication phase is dispersed in a matrix, in which an entire composition of the sliding member is composed of a composition containing, by mass %, Cr: 18% to 35%, Mo: 0.3% to 15%, Ni: 0% to 30%, Si: 0.5% to 6%, S: 0.2% to 4.0%, P: 0% to 1.2%, B: 0% to 0.8%, and a Fe balance containing inevitable impurities, in which the matrix is a Fe—Cr—Mo—Si-based matrix or a Fe—Cr—Mo—Ni—Si-based matrix, the lubrication phase contains chromium sulfide, and a porosity of an entire sliding member is 2.0% or less.

    LOCAL COLLECTION OF CONTAMINANTS FORMED DURING METAL POWDER BED FUSION PROCESS

    公开(公告)号:US20220134425A1

    公开(公告)日:2022-05-05

    申请号:US17083758

    申请日:2020-10-29

    Abstract: A powder bed fusion system includes a powder bed including a build surface and a vacuum system. The vacuum system includes a collection device positioned over the build surface. The collection device includes a body, a pathway defined in the body, wherein the pathway ends in a passageway opening, and a particle retainer connected to the body near the passageway opening. A method of forming a component includes forming a layer of unfused metal powder on a powder bed with a recoater, introducing gas to the powder bed and applying a vacuum with a collection device, fusing a portion of the layer of unfused metal powder on the powder bed with a heat source to form a component layer and generating contaminants, collecting the contaminants from the powder bed with the gas and the vacuum applied by the collection device.

Patent Agency Ranking