Abstract:
A memory cell array includes a plurality of memory cells enabled to store multi-value data. A bit-line control circuit includes data storage circuits connected to bit-lines and each store one of a plurality of sets of page data included in the multi-value data, the bit-line control circuit controlling bit-line voltages applied to the bit-lines. A word-line control circuit controls a word-line voltage applied to a word-line. A control circuit controls the word-line control circuit and the bit-line control circuit. The control circuit performs a mode in which, to distinguish a fault block, all or specific memory cells in a fault block may be written so that all or specific memory cells in the fault block have a threshold voltage higher than a word-line voltage applied to a selected word-line when reading a first page data of the sets of page data.
Abstract:
A semiconductor memory device includes: a memory cell array, in which electrically rewritable and non-volatile memory cells are arranged to store multi-value data; a sense amplifier circuit configured to read data of and write data in the memory cell array; and a controller configured to control data read and write of the memory cell array, wherein the controller has such a function as, when an upper page data write sequence ends in failure, the upper page data being one to be written into an area of the memory cell array where lower page data has already been written, to cache the lower page data read out of the memory cell array and held in the sense amplifier circuit.
Abstract:
A semiconductor memory has a memory cell array, a boosted voltage generator to generate a boosted voltage and a decoder to select memory cells in said memory cell array in response to an address signal. The voltage generator is activated in response to input of a first command, and kept active for a period of repeated input of a second command to control for the voltage generator, following the first command. The semiconductor memory may be provided with a regular operation mode in which the voltage generator is controlled to be in an active or inactive state by means of a first command signal in response to a predetermined signal, and a successive operation mode in which the voltage generator is kept active by a second command signal in response to another predetermined signal.
Abstract:
A non-volatile semiconductor memory device according to the invention comprises a memory cell array having a plurality of non-volatile memory cells, and a write state machine controlling a voltage applied to a memory cell selected from the memory cell array and a voltage application period, in accordance with each of reading of data from the selected memory cell, writing of data into the selected memory cell, and erasion of data from the selected memory. The write state machine executes writing, under a first writing condition, on a predetermined number of memory cells included in the memory cell array, and executes writing on memory cells other than the predetermined number of memory cells, under a second writing condition set in accordance with a result of the writing executed under the first writing condition.