Abstract:
A silicon control rectifier and an electrostatic discharge protection device of an integrated circuit including the silicon control rectifier. The silicon control rectifier includes a silicon body formed in a silicon layer in direct physical contact with a buried oxide layer of a silicon-on-insulator substrate, a top surface of the silicon layer defining a horizontal plane; and an anode of the silicon control rectifier formed in a first region of the silicon body and a cathode of the silicon control rectifier formed in an opposite second region of the silicon body, wherein a path of current flow between the anode and the cathode is only in a single horizontal direction parallel to the horizontal plane.
Abstract:
A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events.
Abstract:
Methods of creating reversible and irreversible wrinkle structures are provided. A shape memory polymer is heated to a transition temperature and cooled while applying a first force. A rigid film layer is secured to the shape memory polymer to form a bilayer. The original shape of the shape memory polymer is recovered to create a first set of wrinkles in the rigid film layer. The bilayer is heated to the transition temperature and a second tensile force is applied to create a second set of wrinkles in the rigid film layer.
Abstract:
A method of forming a semiconductor structure, including forming a channel in a first portion of a semiconductor layer and forming a doped extension region in a second portion of the semiconductor layer abutting the channel on a first side and abutting an insulator material on a bottom side. The first portion of the semiconductor layer is thicker than the second portion of the semiconductor layer.
Abstract:
Disclosed are embodiments of a self-protected electrostatic discharge field effect transistor (SPESDFET). In the SPESDFET embodiments, a resistance region is positioned laterally between two discrete sections of a deep source/drain region: a first section that is adjacent to the channel region and a second section that is contacted. The second section of the deep source/drain region is silicided, but the first section adjacent to the channel region and the resistance region are non-silicided. Additionally, the gate structure can be either silicided or non-silicided. With such a configuration, the disclosed SPESDFET provides robust ESD protection without consuming additional area and without altering the basic FET design (e.g., without increasing the distance between the deep source/drain regions and the channel region). Also disclosed are embodiments of integrated circuit that incorporates the SPESDFET as an input/output (I/O) pad driver and method embodiments for forming the SPESDFET and the integrated circuit.
Abstract:
A vertical NPNP structure fabricated using a triple well CMOS process, as well as methods of making the vertical NPNP structure, methods of providing electrostatic discharge (ESD) protection, and design structures for a BiCMOS integrated circuit. The vertical NPNP structure may be used to provide on-chip protection to an input/output (I/O) pad from negative-voltage ESD events. A vertical PNPN structure may be also used to protect the same I/O pad from positive-voltage ESD events.
Abstract:
A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes first and second silicon controlled rectifiers (SCRs) formed in a substrate. Further, the first and the second SCRs each include at least one component commonly shared between the first and the second SCRs.
Abstract:
Semiconductor structures providing protection against electrostatic events of both polarities are provided. A pair of p-n junctions is provided underneath a shallow trench isolation portion between a first-conductivity-type well and each of a signal-side second-conductivity-type well and an electrical-ground-side second-conductivity-type well in a semiconductor substrate. A second-conductivity-type doped region and a first-conductivity-type doped region are formed above each second-conductivity-type well such that a portion of the second-conductivity-type well resistively separates the second-conductivity-type doped region and the first-conductivity-type doped region within the semiconductor substrate. Each of the second-conductivity-type doped regions is wired either to a signal node or electrical ground. One of the two npn transistors and one of the two p-n diodes, each inherently present in the semiconductor structure, turn on to provide protection against electrical discharge events involving either type of excessive electrical charges.
Abstract:
A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a P+-N body diode and an N+-P body diode. The P+-N body diode and the N+-P body diode are laterally integrated.
Abstract:
Semiconductor structures providing protection against electrostatic events of both polarities are provided. A pair of p-n junctions is provided underneath a shallow trench isolation portion between a first-conductivity-type well and each of a signal-side second-conductivity-type well and an electrical-ground-side second-conductivity-type well in a semiconductor substrate. A second-conductivity-type doped region and a first-conductivity-type doped region are formed above each second-conductivity-type well such that a portion of the second-conductivity-type well resistively separates the second-conductivity-type doped region and the first-conductivity-type doped region within the semiconductor substrate. Each of the second-conductivity-type doped regions is wired either to a signal node or electrical ground. One of the two npn transistors and one of the two p-n diodes, each inherently present in the semiconductor structure, turn on to provide protection against electrical discharge events involving either type of excessive electrical charges.