Abstract:
An arrangement is provided for using 2's complement arithmetic without the high switching activity of the prior art. In particular, the invention operates to exploit the sign-extension property of a 2's complement number. A reduced representation for 2's complement numbers is provided to avoid sign-extension and the switching of sign-extension bits. The maximum magnitude of a 2's complement number is detected and its reduced representation is dynamically generated to represent the signal. A constant error introduced by the reduced representation is also dynamically compensated.
Abstract:
A polymeric material comprising alternate substituted fluorene and phenylene units, as represented by the following formula wherein R1, R2, R3 and R4, which may be identical or different, are each selected from the group consisting of H, a (C1-C22) linear or branched alkyl, alkoxy or oligo (oxyetylene) group, a (C6-C30) cycloalkyl group, and an unsubstituted or substituted aryl group, and n is from about 3 to about 5000.
Abstract:
aPL analogs that (a) bind specifically to B cells to which an aPL epitope binds and are disclosed. Optimized analogs lack T cell epitope(s) are useful as conjugates for treating aPL antibody-mediated diseases. Conjugates comprising aPL analogs and nonimmunogenic valency platform molecules are provides as are novel nonimmunogenic valency platform molecules and linkers. Methods of preparing and identifying said analogs, methods of treatment using said analogs, methods and compositions for preparing conjugates of said analogs and diagnostic immunoassays for aPL antibodies are disclosed.
Abstract:
aPL analogs that (a) bind specifically to B cells to which an aPL epitope binds and are disclosed. Optimized analogs lack T cell epitope(s) are useful as conjugates for treating aPL antibody-mediated diseases. Methods of preparing and identifying said analogs, methods of treatment using said analogs, methods and compositions for preparing conjugates of said analogs and diagnostic immunoassays for aPL antibodies are disclosed.
Abstract:
A method and apparatus are disclosed for increasing the effective processing speed of a parallel decision-feedback equalizer (DFE) by combining block processing and look-ahead techniques in the selection (multiplexing) stage. The present invention extends a parallel DFE by using look-ahead techniques in the selection stage to precompute the effect of previous blocks on each subsequent block, and to thereby remove the serial output dependency. The parallel DFE includes a multiplexor tree structure that selects an appropriate output value for each block and precomputes the effect of previous blocks on each subsequent block. A multiplexing delay algorithm on the order of logN is employed to resolve the output dependency and thus speeds up parallel block processing DFEs. The disclosed DFE architecture can be combined with pipelining to completely eliminate the critical path problem. Pipelining reduces the required critical path timing to one multiplexing time. The disclosed multiplexor tree circuitry for the parallel DFE groups multiplexor blocks into groups of two, referred to as block pairs, and provides at least one multiplexor for each block, i, to select an output value, yi, from among the possible precomputed values. The output of each parallel block depends on the possible precomputed values generated by the look-ahead processors for the block, as well as the actual values that are ultimately selected for each previous block. In order to reduce the delay in obtaining each actual output value, the present invention assumes that each block contains each possible value, and carries the assumption through to all subsequent blocks. Thus, the number of multiplexors required to select from among the possible values grows according to N·logN, where N is the block number.
Abstract:
This invention relates generally to cyclic polypeptides comprising a thioether linkage and methods for their preparation. More particularly, this invention relates to halogenated polypeptides having at least one haloalanine-like amino acid, and methods for their preparation which involve converting the hydroxyl group (i.e., --OH) of a serine-like amino acid to a halo group (i.e., --X where X is Cl, Br, or I) with the aid of a phosphorus-based halogenation reagent such as a triphenylphosphine dihalide (i.e., (C.sub.6 H.sub.5).sub.3 PX.sub.2, wherein X is Cl, Br, or I), a triphenylphosphite dihalide (i.e., (C.sub.6 H.sub.5 O).sub.3 PX.sub.2, wherein X is Cl, Br, or I), or a mixture of triphenylphosphine or triphenylphosphite with a halohydrocarbon (i.e., "halo-conversion"). This invention also relates to cyclic polypeptides having at least one polypeptide loop comprising a thioether linkage, and methods for their preparation which employ halogenated polypeptides and which involve intramolecular alkylation of the thiol group of a cysteine-like amino acid by the halo group of a haloalanine-like amino acid under suitable basic conditions to form a thioether linkage (i.e., "cyclization").
Abstract:
An under trimming device with inclinedly movable catchers for a multi-needle sewing machine with multiple longitudinally extended loopers comprises a cutting and clamping part, a fixed cutter, a plurality of looper assemblies and a thread push plate, characterized in that: the movable catcher of the cutting and clamping part and the looper form an angle of inclination such that when performing the thread cutting, the movable catcher extends toward the looper at an angle of inclination, and extends into the needle thread loop and the looper thread loop, and when the movable catcher returns to its initial position, the looper thread and the needle thread are cut off sequentially when they pass the fixed cutter, and the free end of the looper thread after being cut is still clamped between the leaf spring and the movable catcher, and the free ends of the cut needle threads are blown sideward in the opposite direction by an air blower to facilitate a next sewing.
Abstract:
Convergence of blind fractionally spaced equalizers is improved, and misconvergence is corrected by training the equalizers to detect convergence of one adaptive filter, copying the tap weights of the converged adaptive filter to the other adaptive filters and shifting the tap weights of the other adaptive filters according to the expected phase difference between the respective filters. In a two-dimensional orthogonal modulation scheme the converged weights of a first filter are copied to a second filter and shifted .pi./2. For the two dimensional orthogonal modulation scheme, the probability of a proper convergence can be increased by choosing initial tap weights for the two adaptive filters with a 3.pi./4 phase difference.