Abstract:
Systems for treating a bone, e.g. a vertebral body, having an interior volume occupied, at least in part, by cancellous bone provide a first tool, a second tool, and a third tool. The first tool establishes a percutaneous access path to bone. The second tool is sized and configured to be introduced through the percutaneous access path to form a void that occupies less than the interior volume. The third tool places within the void through the percutaneous access path a volume of filling material. Related methods for treating a bone, e.g. a vertebral body, having an interior volume occupied, at least in part, by cancellous bone provide establishing a percutaneous access path to bone. A tool is introduced through the percutaneous access path and manipulated to form a void that occupies less than the interior volume. A volume of filling material is then placed within the void through the percutaneous access path.
Abstract:
A prosthesis replaces all or a portion of a cephalad portion of a natural facet joint (i.e., an inferior articular process) on a vertebral body. The prosthesis has a prosthesis body that accommodates fixation to the vertebral body at or near a pedicle and without support by a lamina. The prosthesis also has an artificial facet joint structure carried by the prosthesis body adapted and configured to replace all or a portion of a cephalad portion of a natural facet joint.
Abstract:
Devices and surgical methods treat various types of adult spinal pathologies, such as degenerative spondylolisthesis, spinal stenosis, degenerative lumbar scoliosis, and kypho-scoliosis. Various types of spinal joint replacement prostheses, surgical procedures for performing spinal joint replacements, and surgical instruments are used to perform the surgical procedures.
Abstract:
Devices and surgical methods treat various types of adult spinal pathologies, such as degenerative spondylolisthesis, spinal stenosis, degenerative lumbar scoliosis, and kypho-scoliosis. Various types of spinal joint replacement prostheses, surgical procedures for performing spinal joint replacements, and surgical instruments are used to perform the surgical procedures.
Abstract:
Prostheses, systems, and methods are provided for replacement of natural facet joints between adjacent vertebrae using polyaxial attachment mechanisms for securing the prostheses to the vertebrae. A cephalad prosthesis attached to a superior adjacent vertebra replaces the inferior half of a natural facet joint. A caudal prosthesis attached to an inferior adjacent vertebra replaces the superior half of a natural facet joint. Both the cephalad and caudal prostheses are configured with artificial facet joint structures that include articulating surfaces that cooperate and form an artificial articular configuration. The polyaxial attachment mechanism permits adjustment of the position of the artificial facet joint structure along more than one axis at or after the time the cephalad or caudal prosthesis is attached to a vertebra.
Abstract:
Cephalad and caudal vertebral facet joint prostheses and methods of use are provided. The cephalad prostheses are adapted and configured to be attached to a lamina portion of a vertebra without blocking a pedicle portion of the cephalad vertebra. In some embodiments, the prosthesis is attached with a non-invasive support member, such as a clamp. In other embodiments, a translaminar screw may be used for additional fixation.
Abstract:
Cephalad and caudal vertebral facet joint prostheses and methods of use are provided. The prostheses provide an artificial facet joint structure including an artificial articular configuration unlike the preexisting articular configuration. The radii and material stress values of the prostheses are configured to sustain contact stress. The cephalad prosthesis provides for posterior-anterior adjustment. Both prostheses permit lateral adjustment and adjustment to accommodate interpedicle distance. Further, the prostheses may be customized to provide a pre-defined lordotic angle and a pre-defined pedicle entry angle.
Abstract:
Cephalad and caudal vertebral facet joint prostheses and methods of use are provided. The prostheses provide an artificial facet joint structure including an artificial articular configuration unlike the preexisting articular configuration. The radii and material stress values of the prostheses are configured to sustain contact stress. The cephalad prosthesis provides for posterior-anterior adjustment. Both prostheses permit lateral adjustment and adjustment to accommodate interpedicle distance. Further, the prostheses may be customized to provide a pre-defined lordotic angle and a pre-defined pedicle entry angle.
Abstract:
Devices and surgical methods treat various types of adult spinal pathologies, such as degenerative spondylolisthesis, spinal stenosis, degenerative lumbar scoliosis, and kypho-scoliosis. Various types of spinal joint replacement prostheses, surgical procedures for performing spinal joint replacements, and surgical instruments are used to perform the surgical procedures.
Abstract:
A prosthesis assembly replaces a cephalad portion of a left natural facet joint (i.e., a left inferior articular process) on a vertebral body and a cephalad portion of a right natural facet joint (i.e., a right inferior articular process) on a vertebral body. The prosthesis assembly has a left prosthesis body accommodating fixation to the vertebral body at or near a left pedicle and without support by a lamina. An artificial left facet joint structure carried by the left prosthesis body and is adapted and configured to replace a cephalad portion of the left natural facet joint. The prosthesis assembly further has a right prosthesis body accommodating fixation to the vertebral body at or near a left pedicle and without support by a lamina. An artificial right facet joint structure is carried by the right prosthesis body and is adapted and configured to replace a cephalad portion of the right natural facet joint.