Abstract:
Anthracene compounds and organic electroluminescent devices employing the same. Anthracene compounds can serve as host materials for an blue organic electroluminescent device. Furthermore, the anthracene compounds can also serve as hole transport layer materials or electron transport layer materials for organic electroluminescent devices, by way of the silyl phenyl group thereof.
Abstract:
A processor includes a plurality of execution units configured to execute instructions, a pre-decoder configured to sieve out a power-switching instruction from the instructions, and a power controller configured to control the status of the execution unit based on the power-switching instruction. The power controller includes an identification decoder configured to generate identifications respectively corresponding to the execution units from the power-switching instruction, and a power manager configured to switch the execution unit corresponding to the identification. Particularly, the power-switching instruction includes a power-on instruction and a power-off instruction. The processor further includes a plurality of reservation tables each configured to store the instruction to be executed by one of the execution units, and a turn-off signal is not conveyed to the power manager until the reservation table corresponding to the execution unit to be turned off is empty.
Abstract:
In an OLED having an electron transport layer and a light emitting layer, at least one of these layers contains an anthracene derivative, wherein at least one of the substituents on the anthracene compound has a tetra-substitution center of either C—SP3 or Si. The anthracene derivative can be used as dopant or host material in the light-emitting layer.
Abstract:
Anthracene compounds and organic electroluminescent devices employing the same. Anthracene compounds can serve as host materials for an blue organic electroluminescent device. Furthermore, the anthracene compounds can also serve as hole transport layer materials or electron transport layer materials for organic electroluminescent devices, by way of the silyl phenyl group thereof.
Abstract:
An integrated network element management system includes a client computer (6) and a master network element (7). The client computer includes a user interface (61) and an application (62). Various network elements may be displayed on the user interface in the form of icons that can be dragged by a user. The application performs configuration on a specific network element selected by the user on the user interface. The master network element communicatively connects with the client computer and a plurality of network elements. The master network element includes a topology information module for collecting topology information via the Topology Discovery Protocol, and for storing the topology information and configuration files of the network elements. A related integrated network element management method is also provided.
Abstract:
A wafer loading system positioning method and device, comprising a loading system, having a base and a rear plate for docking on a positioning frame of a production equipment. The main characteristic thereof is that the loading system in an upper part of the rear plate has a holding seat and the positioning frame in an upper part of a front side has an upward extending positioning element. Two eccentric cams on the holding seat and the positioning element allow to adjust a relative position of the holding seat with respect to the positioning element. A lifting mechanism enables raising of the loading system for lifting said holding seat above said positioning element, so as to enable said holding seat to engage with said positioning element.
Abstract:
A method for completely removing dielectric layers formed selectively upon a substrate employed within a microelectronics fabrication from regions wherein closely spaced structures such as self-aligned metal silicide (or salicide) electrical contacts may be fabricated, with improved properties and with attenuated degradation. There is first provided a substrate with employed within a microelectronics fabrication having formed thereon patterned microelectronics layers with closely spaced features. There is then formed a salicide block layer employing silicon oxide dielectric material which may be selectively doped. There is then formed over the substrate a patterned photoresist etch mask layer. There is then etched the pattern of the patterned photoresist etch mask layer employing dry plasma reactive ion etching. An anhydrous etching environment is then employed to completely remove the silicon oxide dielectric salicide block layer with attenuated degradation of the microelectronics fabrication.
Abstract:
An apparatus for preventing the over-tilt of a gripper assembly in a cassette loading device is described. The apparatus provides an additional sensor arm system rigidly mounted to the gripper assembly such that the additional sensor arm not only provides a method for it to reach an over-tilt position, but also provides a mechanical stop to manually stop the gripper assembly from making further motion beyond the maximum downward-tilt position of the arm. The apparatus may further be provided with a warning system and a manual override device such that a machine operator may be alerted of the over-tilt condition and further, may manually override the sensor system by temporarily restoring power to the gripper assembly and returning it to a safe position.
Abstract:
A radio frequency antenna is fabricated by first injection molding a group of broadband radio frequency radiating elements from a polymeric material, metallizing each broadband radio frequency radiating element, and installing a transmission line within each broadband radio frequency radiating element. A support structure is prepared by injection molding at least one, and preferably multiple, flat support plates, and metallizing each plate. A pattern of electrical connectors is formed on the plates. A forward plate has a group of attachment locations thereon, and, collectively, the pattern of electrical conductors provide an electrical feed to each of the attachment locations. A broadband radio frequency radiating element is affixed, preferably by ultrasonic welding, to each of the plurality of attachment locations, with the transmission line of each broadband radio frequency radiating element in electrical communication with the electrical conductor extending to the respective attachment location. The flat plates are connected together, and associated structure, such as feeds, are provided.
Abstract:
A generally rectangular waveguide antenna has two narrow side walls connected to two broad walls. One of the broad walls takes the form of a conventional rectangular ridged wall. The other broad wall is curved with the arc of the curve extending substantially the full width of the wall. The antenna has an open end and a closed end. The end of the curved broad wall extends beyond the end of the rectangular ridge wall at the open end of the antenna. The two narrow sidewalls are cut at an angle, at the open end, to join the shorter ridged wall and the extended curved wall.