Abstract:
Embodiments of the invention provide a memory allocation module that adopts memory-pool based allocation and is aware of the physical configuration of the memory blocks in order to manage the memory allocation intelligently while exploiting statistical characters of packet traffic. The memory-pool based allocation makes it easy to find empty memory blocks. Packet traffic characteristics are used to maximize the number of empty memory blocks.
Abstract:
A method of powerline communications in a powerline communications (PLC) network including a first node and at least a second node. The first node transmits a data frame to the second node over a PLC channel. The second node has a data buffer for storing received information. The second node runs a flow control algorithm which determines a current congestion condition or a projected congestion condition of the data buffer based on at least one congestion parameter. The current congestion condition and projected congestion condition include nearly congested and fully congested. When the current or projected congestion condition is either nearly congested or fully congested, the second node transmits a BUSY including frame over the PLC channel to at least the first node. The first node defers transmitting of any frames to the second node for a congestion clearing wait time.
Abstract:
A method of powerline communications (PLC) includes compiling a data frame for physical layer (PHY) by a first communications device at a first communications node on a powerline of a PLC network. The data frame includes a single tone PHY header portion and a data payload portion in a set of tones including at least one tone having a frequency different from a frequency of the single tone. The PHY header portion includes tone mask identification information identifying the set of tones. The first communications device transmits the data frame over the powerline to a second communications device at a second communications node on the powerline. The second communications device receives the data frame, and decodes the data payload using the tone mask identification information in the PHY header portion.
Abstract:
Systems and methods for designing, using, and/or implementing hybrid communication networks are described. In various embodiments, these systems and methods may be applicable to power line communications (PLC). For example, one or more of the techniques disclosed herein may include methods to coordinate medium-to-low voltage (MV-LV) and low-to-low voltage (LV-LV) PLC networks when the MV-LV network operates in a frequency subband mode and the LV-LV network operates in wideband mode (i.e., hybrid communications). In some cases, MV routers and LV routers may have different profiles. For instance, MV-LV communications may be performed using MAC superframe structures, and first-level LV to lower-level LV communications may take place using a beacon mode. Lower layer LV nodes may communicate using non-beacon modes. Also, initial scanning procedures may encourage first-to-second -level LV device communications rather than MV-to-first-level LV connections.
Abstract:
In at least some embodiments, a communication device includes a transceiver with at least two dissimilar wireless network technology subsystems. The communication device also includes a silencing frame controller to monitor access point rate drop behavior and to adjust a level of silencing frame operations for the communication device based on the monitored access point drop behavior.
Abstract:
A method of performing wireless communications. The method receives at a receiving unit a sequence of data blocks from a transmitting unit. The method also identifies at the receiving unit a first number of invalid sequential data blocks in the sequence and a second number of valid sequential data blocks in the sequence. The method also communicates from the receiving unit a wireless message to the transmitting unit. The wireless message comprises a first field that specifies the first number and a second field that specifies the second number—the encoding of the first field is operable to specify a different maximum than an encoding of the second field.
Abstract:
A wireless transmit/receive unit (WTRU) (152) in a wireless communications system includes a transceiver (153) for transmitting and receiving data from a plurality of base stations (154, 156, 357) and a controller (151) communicatively coupled to the transceiver (153) and configured to adjust an operation mode of the transceiver (153). In the WTRU (152), adjusting comprises configuring the transceiver (153) to begin a radio link handover procedure responsive to receiving a handover (HO) command from a first of the plurality of base stations (154, 156, 357) over a first communications link, specifying a first time, and reconfiguring the transceiver (153) to begin a radio link interruption procedure responsive to an expiry of the first time prior to completion of the radio link handover procedure. In the WTRU (152), the radio link interruption procedure first attempts to re-establish the first communications link.
Abstract:
Apparatus and method for providing fine timing assistance to global navigation satellite systems (GNSS) via wireless local area network (WLAN). In one embodiment, a method for synchronizing a global navigation satellite system (GNSS) receiver includes receiving, by a wireless device, via a wireless local area network (WLAN), fine time assistance information transmitted by an assisting device connected to the WLAN. A time value of a GNSS clock of the wireless device is adjusted based on the fine time assistance information. Based on the adjusted time value, GNSS codes of a GNSS positioning signal are acquired by the wireless device.
Abstract:
In at least some embodiments, a wireless communication device includes a transceiver having control logic to detect traffic conditions for a communication group and to enter different power-save modes for different traffic conditions. The control logic is configured to advertize a first power-save mode to the communication group in response to a first detected traffic condition, to advertize a second power-save mode to the communication group in response to a second detected traffic condition, and to advertize a third power-save mode to the communication group in response to a third detected traffic condition.
Abstract:
A method of obtaining timing parameters between wireless station peers using reduced power. A timing measurement protocol is executed a including a plurality of Timing Measurement Action (TMA) frames between a first wireless station (STA1) and a second STA (STA2) within a wireless network. The plurality of TMA frames span a communications interval and include timing information. A power-save protocol is employed by at least one of STA1 and STA2 during execution of the timing measurement protocol during one or more sub-intervals between the plurality of TMA frames. STA1 or STA2 computes at least one timing parameter using the timing information.