Abstract:
An entertainment and connectivity system includes a processor for transferring information between a vehicle based user device and a server to validate a user's government identity before granting the user device access to the internet. The vehicle based server has an internet protocol address and communicates with user devices. The user devices each have an onboard internet protocol address mapped to the internet protocol address of the vehicle based server. A processor associated with the vehicle based server receives requests for internet service originating from the user devices. The requests include travel information or internet subscription plan information for a user of each of the user devices. The vehicle based server, or a ground based server that receives the request, generates an internet connection authorization decision based on validation of the user's government identity or the user's internet subscription plan information. The connection authorization decisions are then used to control whether the internet connections are established to the user devices. If the internet connections are established, internet session information for the user devices, including for each user device the onboard internet protocol address mapped to the internet protocol address of the vehicle based server, is stored in a ground based server and can be retrieved to identify the government identity of a user or a user's internet subscription plan information for each of the user devices.
Abstract:
An entertainment system includes a memory connected to a processor and storing program code that executed by the processor to perform operations to securely pair and communicate with a user device based on multiple security controls. The operations include receiving a request to pair the user device to a network interface of the entertainment system. Responsive to the request to pair, generating an encrypted code. The encrypted code includes network credentials for connecting to the network interface and a time-limited authentication application for connecting to the server. The encrypted code is communicated to the user device to decrypt. The user device is connected through the network interface based on the user device presenting the network credentials from the decrypted code. The entertainment system includes server having a first certificate that is digitally signed. The entertainment system receives a request from the user device having a second certificate that is digitally signed to connect to the server. Responsive to the request to connect, generating a connection authorization decision for the user device based on two-factor authentication. The two-factor authentication includes validating the second certificate and validating a time-limited authentication application from the user device. The entertainment system connects the user device to the server when the connection authorization decision authorizes the connection based on successful two-factor authentication.
Abstract:
An entertainment system includes a docking station having a wired interface, a display unit, and a wireless controller. The display unit includes a video display device and a processor that communicates through a Bluetooth transceiver and the wired interface of the docking station. The wireless controller includes a processor that communicates through a wired interface and a Bluetooth transceiver. The wireless controller is releasably docked in the docking station to communicatively connect the wired interfaces of the wireless controller and the docking station. While docked in the docking station the processors of the wireless controller and the display unit communicate through the wired interfaces of the wireless controller and the docking station to establish a Bluetooth connection between the Bluetooth transceivers of the wireless controller and the display unit. The processor of the wireless controller does not operate to establish the Bluetooth connection using communications through the Bluetooth transceiver.
Abstract:
A slave Bluetooth device establishes first and second connections with first and second master Bluetooth devices, respectively, that each operate in a master mode. The slave Bluetooth device operates in a slave mode when communicating through any of the first and second connections. The slave Bluetooth device communicates connection parameter update request packets containing timeout values to the first and second master Bluetooth devices. The slave Bluetooth device alternates during non-overlapping time slots between at least: 1) monitoring the first connection for traffic transmitted by the first master Bluetooth device while not monitoring the second connection; and 2) monitoring the second connection for traffic transmitted by the second master Bluetooth device while not monitoring the first connection; and controls a rate at which the alternating is performed based on the first timeout value and the second timeout value.
Abstract:
A network analysis terminal is described that operates within a vehicle cabin to generate passenger connectivity experience metrics. The terminal monitors packets communicated through at least one cabin network between a content server and passenger terminals. The terminal receives packets monitored by the network interface and identifies passenger terminal identifiers that are addressed by content of the packets. Names of vehicle passengers associated with the packets are identified using the passenger terminal identifiers as indexes to retrieve the names of vehicle passengers from an information repository that maps names of vehicle passengers to passenger terminal identifiers. Passenger connectivity experience metrics are generated based on measurements performed on the packets over time. The passenger connectivity experience metrics indicate network connectivity performance that is experienced by the identified names of vehicle passengers while operating passenger terminals using the at least one cabin network.
Abstract:
A slave Bluetooth device establishes first and second connections with first and second master Bluetooth devices, respectively, that each operate in a master mode. The slave Bluetooth device operates in a slave mode when communicating through any of the first and second connections. The slave Bluetooth device communicates connection parameter update request packets containing timeout values to the first and second master Bluetooth devices. The slave Bluetooth device alternates during non-overlapping time slots between at least: 1) monitoring the first connection for traffic transmitted by the first master Bluetooth device while not monitoring the second connection; and 2) monitoring the second connection for traffic transmitted by the second master Bluetooth device while not monitoring the first connection; and controls a rate at which the alternating is performed based on the first timeout value and the second timeout value.
Abstract:
An entertainment system includes a video display unit facing a passenger seat and a track pad assembly integrated with an armrest of the passenger seat. The track pad assembly includes a track pad that is operable to control the video display unit.
Abstract:
A network analysis terminal is described that operates within a vehicle cabin to generate passenger connectivity experience metrics. The terminal monitors packets communicated through at least one cabin network between a content server and passenger terminals. The terminal receives packets monitored by the network interface and identifies passenger terminal identifiers that are addressed by content of the packets. Names of vehicle passengers associated with the packets are identified using the passenger terminal identifiers as indexes to retrieve the names of vehicle passengers from an information repository that maps names of vehicle passengers to passenger terminal identifiers. Passenger connectivity experience metrics are generated based on measurements performed on the packets over time. The passenger connectivity experience metrics indicate network connectivity performance that is experienced by the identified names of vehicle passengers while operating passenger terminals using the at least one cabin network.
Abstract:
A portable entertainment system for a vehicle includes a portable housing, a transceiver, a processor, a memory, and a rechargeable battery. The transceiver communicates through RF signals with Portable Electronic Devices (PEDs) operated by vehicle passengers. The rechargeable battery supplies power to the transceiver, the processor, and the memory. The memory is coupled to the processor and includes entertainment content and further includes computer readable program code that causes the processor to communicate a list, of at least some of the entertainment content available in the memory, to the PEDs. A content selection message is received through the transceiver from one of the PEDs that requests communication of a selected one of the entertainment content identified in the list. The selected entertainment content is communicated through the transceiver to the PED. The transceiver, the processor, and the memory are enclosed within the portable housing.
Abstract:
A method by a cabin wireless access point (CWAP) server includes receiving an IP address request message from a CWAP installed in a vehicle cabin. The IP address request message contains data identifying a physical location of the CWAP within the vehicle cabin. The physical location of the CWAP is identified within the vehicle cabin responsive to the data contained in the IP address request message. An IP address is assigned to the CWAP responsive to the physical location of the CWAP identified by the data. An IP address message containing the IP address is communicated to the CWAP. Related methods by CWAPs and corresponding CWAP servers and CWAPs are disclosed.