Abstract:
A method of measuring a critical dimension may include forming an object pattern on a substrate and forming a plurality of reference patterns on the substrate, wherein each of the plurality of reference patterns has a different critical dimension. An optical property of each of the plurality of reference patterns may be measured to provide a respective measured optical property for each of the reference patterns, and an optical property of the object pattern may be measured to provide a measured optical property of the object pattern. The measured optical property of the object pattern may be compared with the measured optical properties of the reference patterns, and a critical dimension of the object pattern may be determined as being the same as the critical dimension of the reference pattern having the measured optical property that is closest to the measured optical property of the object pattern. Related devices are also discussed.
Abstract:
An exposure method and apparatus for use in exposing a photoresist on a semiconductor wafer do not employ an aperture for shaping the exposure light. The exposure apparatus includes a light source unit, a reflecting mirror unit having a micro mirror array (MMA) and a control unit that controls the MMA, and a pattern transfer unit that transfers the pattern of a photomask onto the photoresist. The angles of inclination of the respective mirrors of the MMA are adjusted to reflect incident light in a manner that shapes the incident light. Accordingly, it is possible to form a pattern having the highest degree of resolution and optimum depth of focus (DOF) in the shortest amount of processing time.
Abstract:
A method for controlling CD of etch process defines difference between designed dimension and etched dimension as dimensional displacement and defines target value of the dimensional displacement. A plurality of samples are prepared in each group having different exposure ratios. The plurality of samples of each group are etched until etch end point is detected and then over-etched for uniform time interval after detecting the etch end point. Using etch end point and over-etch time, correlation function of the over-etch time to the etch end point time is determined and the over-etch time to the etch end point is determined using the correlation function.
Abstract:
A mask blank includes a transparent substrate, a light shield layer formed on the upper surface of the transparent substrate, and a multi-functional protective layer formed on the light shield layer. To make a phase shift mask from the blank, the protective layer is patterned, and the light shield layer is etched using the protective layer pattern as an etch mask. The phase shift region is formed by etching a groove in the second region of the substrate while the protective layer pattern protects the light shield layer. Therefore, undesirable residue is prevented from forming at the bottom of the groove constituting the phase shift region. The method also entails patterning a photosensitive layer on the protective layer, and patterning the protective layer by using the patterned photosensitve layer as a mask. In this case, the structure is cleaned so that no residue remains on the exposed portions of the light shield layer.
Abstract:
A method of fabricating a phase shift mask is provided in which light shield film patterns for setting a phase shift region and a phase non-shift region are simultaneously formed on a substrate. A groove is formed in the substrate set as the phase shift region. The light shield film pattern, which contacts the groove and is formed on a region of the substrate set as the phase non-shift region, is removed. A phase shift layer is formed between the substrate and the light shield film pattern. In this case, regions set by the light shield film pattern become opposite to when the phase shift layer is not formed. That is, a phase shift region is changed into a phase non-shift region, and the phase non-shift region is changed into the phase shift region. As described above, the phase shift region and the phase non-shift region are simultaneously set when the light shield film pattern is formed, thus preventing the position of the phase shift or non-shift region from being shifted due to sequential formation of the phase shift and non-shift regions.
Abstract:
An acousto-optic modulator including an ultrasonic medium for controlling light from an optical source through diffraction, two transducers each having one electrode formed on one side thereof, the electrodes being for generating an acousto-elastic wave, and a conductive adhesive layer interposed between the ultrasonic medium and each of the sides of the transducers opposite to the sides on which the electrodes are installed, in order to adhere each of the transducers to the ultrasonic medium.
Abstract:
An acousto-optic modulator comprised of an acousto-optic element coated with an anti-reflection layer, and a method of manufacturing the same, are provided. The acousto-optic modulator includes an anti-reflection layer, comprised of at least two coating layers having different refractive indices, formed on the light incident/emitting surface of an ultrasonic medium for modulating a light beam incident from an optical source.
Abstract:
An acousto-optic modulator having an ultrasonic medium for controlling light from a light source by diffracting the light and a transducer portion having electrodes for generating an acoustic wave in the ultrasonic medium, wherein the transducer portion includes two transducers each having an electrode. The AOM is provided with two electrodes by using two transducers, thereby facilitating impedance matching with a driver. The two transducers may be installed so that their polarization directions are opposite to each other, thereby obtaining maximum power transfer to the ultrasonic medium.