Abstract:
One embodiment describes an electronic display. The electronic display includes display driver circuitry that displays at least a first image frame and a second image frame on the electronic device using a first display pixel and a second display pixel. The electronic display also includes touch sensing circuitry that detects user interaction with the electronic display. A timing controller of the electronic display determines at least a first insertion time for a first intra-frame pause for the first image frame and a second insertion time for a second intra-frame pause for the second image frame. The first and second intra-frame pauses are periods where the display driver circuitry is pauses rendering of image data to allow the touch sensing circuitry to detect user interaction. The insertion times for the first and second intra-frame pauses are varied from one another. The timing controller inserts the first intra-frame pause during rendering of the first image frame at the first insertion time and inserts the second intra-frame pause during rendering of the second image frame at the second insertion time.
Abstract:
An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. A charge accumulation tracker may analyze the image frames to determine when there is a risk of excess charge accumulation. The charge accumulation tracker may implement a physically derived circuit model of the pixels. A charge accumulation input response matrix and a charge accumulation state response matrix for the model may be stored in look-up table circuitry and used in computing a current charge accumulation state based on current pixel voltage information and previous state information. The impact of temperature, backlight illumination level, frame duration, and other factors may be taken into account in evaluating the current charge accumulation state.
Abstract:
Methods and devices employing circuitry for dynamically adjusting bandwidth control of a display interface are provided. The display interface or image content is dynamically adjusted to support both high-speed image data (e.g., 120 Hz image data) and lower-speed content (e.g., 60 Hz content). For example, in some embodiments, additional pixel pipelines and/or processing lanes may be activated during the rendering of high-speed image data, but not during the rendering of low-speed image data. Additionally or alternatively, high-speed image data, but not low-speed data, may be compressed to render high-speed content over an interface that supports only low-speed content.
Abstract:
One embodiment describes an electronic display. The electronic display includes display driver circuitry that displays at least a first image frame and a second image frame on the electronic device using a first display pixel and a second display pixel. The electronic display also includes touch sensing circuitry that detects user interaction with the electronic display. A timing controller of the electronic display determines at least a first insertion time for a first intra-frame pause for the first image frame and a second insertion time for a second intra-frame pause for the second image frame. The first and second intra-frame pauses are periods where the display driver circuitry is pauses rendering of image data to allow the touch sensing circuitry to detect user interaction. The insertion times for the first and second intra-frame pauses are varied from one another. The timing controller inserts the first intra-frame pause during rendering of the first image frame at the first insertion time and inserts the second intra-frame pause during rendering of the second image frame at the second insertion time.
Abstract:
A device includes a timing test circuit. The timing test circuit receives a timing signal related to the display of an image on a display. The timing test circuit also determines if the timing signals are invalid. Moreover, the timing test circuit transmits a fault indication when the timing signals are determined to be invalid.
Abstract:
This application relates to methods and apparatus for refreshing a display device at various frequencies. Specifically, multiple areas of the display device can be refreshed concurrently at different frequencies. In this way, when static content is being displayed in certain areas of the display device, those certain areas can be refreshed at a lower rate than areas displaying dynamic content such as video or animation. By refreshing at lower rates, the energy consumed by the display device and subsystems associated with the display device can be reduced. Additionally, processes for reducing flicker when refreshing the display device at different refresh rates are disclosed herein.
Abstract:
The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
Abstract:
A system may include an electronic display panel having pixels, where each pixel emits light based on a respective programming signal applied to the pixel. The system may also include processing circuitry to determine a respective control signal upon which the respective programing signal for each pixel is based. The processing circuitry may determine each respective control signal based at least in part on approximations of respective pixel brightness-to-data relationship as defined by a function having variables stored in memory accessible to the processing circuitry.
Abstract:
A display may have one or more bent portions. To increase the magnitude of curvature in a display and/or to allow for compound curvature in the display, a display panel may be partially formed in a planar state. The partial display panel is then bent to have desired curvature. After the partial display panel is bent, additional display components that are susceptible to damage during the bending process may be added to complete the display panel. A flexible printed circuit may be formed directly on the display panel using precise deposition of conductive material. By forming the flexible printed circuit layer-by-layer directly on the display panel, no substantive pressure needs to be applied to the display panel. Electrical connections may therefore be made to the display panel in regions of the display with high levels of curvature and/or with compound curvature without causing front-of-screen artifacts for the display panel.
Abstract:
Techniques for implementing and/or operating an electronic device including a display pixel layer, which writes a display image during an active period and continues displaying the display image during a blanking period, and a touch sense layer, which generates a first touch image during the active period and a second touch image during the blanking period. The electronic device further includes a controller that determines a first noise metric indicative of display-to-touch noise resulting during the active period based on the first touch image, determines a second noise metric indicative of display-to-touch noise resulting during the blanking period based on the second touch image, and instructs the touch sense layer to not generate a third touch image during a subsequent active period in response to the first noise metric being greater than a noise threshold and the second noise metric not being greater than the noise threshold.