Abstract:
Housings for electronic devices are disclosed. According to one aspect, adjoining surfaces of electronic device housings can be mounted or arranged such that adjoining surfaces are flush to a high degree of precision. The electronic devices can be portable and in some cases handheld.
Abstract:
A media device for storing and playing media such as audio, video or images, includes a memory device configured to store a plurality of media items in a digital format. The media device also includes a display configured to present a group of media items from the plurality of stored media items and to present a visual indicator that is capable of scrolling through the displayed group of media items in order to designate a specific media item from the group of media items. The media device further includes a touch pad configured to receive input from a sliding motion or a tapping motion of a finger. The sliding motion of the finger controls the movement of the visual indicator through the group of media items. The tapping motion of the finger selects the specific media item that is designated by the visual indicator.
Abstract:
An electronic device having an enclosure formed from at least one glass cover and a peripheral structure formed adjacent the periphery of the glass cover is disclosed. The peripheral structure can be secured adjacent to the glass cover with an adhesive. The peripheral structure can be molded adjacent the glass cover so that a gapless interface is formed between the peripheral structure and the periphery of the glass cover. In one embodiment, the peripheral structure includes at least an inner peripheral structure and an outer peripheral structure.
Abstract:
A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.
Abstract:
Housings for electronic devices are disclosed. According to one aspect, adjoining surfaces of electronic device housings can be mounted or arranged such that adjoining surfaces are flush to a high degree of precision. The electronic devices can be portable and in some cases handheld.
Abstract:
Improved housings for electronic devices are disclosed. An electronic device housing can make use of at least one outer member (e.g., cover) that can be aligned, protected and/or secured with respect to other portions of the housing for the electronic device. In one embodiment, an electronic device housing can have one or more outer members (e.g., exposed major surfaces), such as front or back surfaces, that are formed of glass. Protective sides can be provided in some embodiments to protect the edges of the one or more glass surfaces so as to dissipate impact forces and thus reduce damage to the electronic device housing. The one or more glass surfaces can be part of outer member assemblies that can be secured to other portions of the electronic device housing. According to one aspect, adjoining surfaces of electronic device housings can be mounted or arranged such that adjoining surfaces are flush to a high degree of precision. The electronic device can be portable and in some cases handheld.
Abstract:
Electronic devices are provided with a protective housing having one or more housing components. A housing component can be formed from a single sheet of material to appear as if the housing component had been formed from a hollowed out solid block of material. The sheet of material may be deep drawn, forged, and machined to form the housing component. One or more holes may be formed through a portion of the housing component to provide an I/O interface.
Abstract:
An electronic device having an enclosure formed from at least one glass cover and a peripheral structure formed adjacent the periphery of the glass cover is disclosed. The peripheral structure can be secured adjacent to the glass cover with an adhesive. The peripheral structure can be molded adjacent the glass cover so that a gapless interface is formed between the peripheral structure and the periphery of the glass cover. In one embodiment, the peripheral structure includes at least an inner peripheral structure and an outer peripheral structure.
Abstract:
Improved techniques for forming an electronic device housing in which an outer housing member can be assembled with one or more other housing members of the electronic device are disclosed. The one or more other housing members can together with a thin substrate layer (or thin substrate) form a frame to which the outer housing member can be secured. The thin substrate layer facilitates molding of the one or more other housing members adjacent to the outer housing member. In one embodiment, the outer housing member can be made of glass and the one or more other housing members can be made of a polymer, such as plastic. The substrate layer can, for example, be formed of a polymer or a metal. The resulting electronic device housing can be thin yet be sufficiently strong to be suitable for use in electronic devices, such as portable electronic devices.