Abstract:
An apparatus may include a medical device including an elongate shaft disposed about a guidewire, and a distal tip including a plurality of rounded protrusions, wherein adjacent protrusions are fixed directly to each other by a relatively flexible connector. The plurality of protrusions may decrease in size from a proximalmost protrusion distally to distalmost protrusion.
Abstract:
Methods, systems, and uses of bucky paper are provided in the present invention. These embodiments include covering medical implants with single or multiple layers of bucky paper, treating bucky paper with various therapeutics to be released through the bucky paper to a target site, shaping bucky paper into non-conventional configurations for improved therapeutic deliver, and using bucky paper alone or in conjunction with other materials to treat a target site.
Abstract:
A medical device for reducing the volume of a left atrial appendage (LAA) may include an elongate shaft having a distal portion, and a volume-reducing means expandable from a collapsed to an expanded state, the volume-reducing means being releasably attached to the distal portion. The volume-reducing means may include an actuatable frame and an impermeable covering disposed over the frame. The volume-reducing means may be sized to fit within the LAA in the expanded state while maintaining an open fluid flow path from a distal region through the ostium of the LAA. A medical device may include a second volume-reducing means to be placed within and substantially occlude a distalmost region of the LAA. A method may include inserting a volume-reducing means into the LAA, expanding the volume-reducing means, and positioning the volume-reducing means such that an open fluid flow path is maintained through an entire cycle of the heart.
Abstract:
A medical device includes an outer shell defining a cavity, wherein the shell is movable between a deformed and unstressed state, a magnet disposed within the cavity, and a filler material carried within the cavity conforming to the interior shape of the shell in the unstressed state and being capable of holding its shape in the deformed state. The filler material converts from the deformed state to the unstressed state at a temperature not greater than human body temperature.
Abstract:
In embodiments, medical devices, such as balloon catheters, can deliver a biologically active material to body tissue of a patient. The medical device includes a sponge delivery layer which can deliver multiple doses of one or more therapeutic agents to the body tissue. The medical device can further include a drug reservoir, which can supply the delivery layer with one or more therapeutic agents.
Abstract:
A medical device may include an elongate shaft having a distal end portion and a balloon disposed at least partially within the distal end portion. The distal end portion may be configured to selectively expand from a collapsed delivery configuration to a distally-opening expanded filtering configuration. A method of deploying a medical device may include obtaining an elongate shaft having a distal end portion and a balloon disposed at least partially within the distal end portion, advancing the elongate shaft through a vessel to a treatment site, disposing at least a portion of the balloon within the treatment site with the distal end of the elongate shaft positioned adjacent the treatment site, at least partially inflating the balloon, thereby expanding the distal end portion, and deflating the balloon and subsequently performing a procedure with the distal end of the elongate shaft positioned within the vessel adjacent to the treatment site.
Abstract:
A medical device assembly may include an elongated guidewire, an elongated flexible tubular membrane disposed about the guidewire, and a percutaneous medical device, wherein the membrane is configured to permit the percutaneous medical device to pass through the lumen. A method of advancing a medical device through a vessel may include advancing an elongated flexible tubular membrane through the vessel to a treatment site, inserting the medical device into the membrane, and advancing the medical device through the membrane while maintaining the membrane in an axially stationary position relative to the vessel.
Abstract:
According to an aspect, an inflatable penile prosthesis includes a fluid reservoir configured to hold fluid, an inflatable member, and a pump assembly configured to transfer the fluid from the fluid reservoir to the inflatable member during an inflation cycle. The pump assembly includes a first pump configured to inject the fluid into the inflatable member according to a first flow rate, and a second pump configured to inject fluid into the inflatable member according to a second flow rate, where the second flow rate is less than the first flow rate.
Abstract:
An inlet tube of a circulatory support device includes a first end configured to receive incoming blood and a second end coupled to a first end of a blood pump. A lumen extends from the first end to the second end, and a spiral feature is disposed within the lumen and configured to support a spiral flow of the incoming blood.
Abstract:
Medical devices for renal nerve ablation are disclosed. An example medical device for renal nerve ablation may include a catheter shaft having a distal region. The device may include an expandable member coupled to the distal region, a flexible circuit assembly coupled to the expandable member, and a pressure sensor disposed along the expandable member and positioned adjacent to the flexible circuit assembly. The flexible circuit assembly may include one or more pairs of bipolar electrodes and a temperature sensor.