Abstract:
An apparatus and method for detection of peak wavelength values of colorimetric resonant optical biosensors using tunable filters and tunable lasers is provided. Biomolecular interactions may be detected on a biosensor by directing collimated white light towards a surface of the biosensor. Molecular binding on the surface of the biosensor is indicated in a shift in the peak wavelength value of the reflected or transmitted light from the biosensor, while an increase in the wavelength corresponds to an increase in molecular absorption. A tunable laser light source may generate the collimated white light and a tunable filter may receive the reflected or transmitted light and pass the light to a photodiode sensor. The photodiode sensor then quantifies an amount of the light reflected or transmitted through the tunable filter as a function of the tuning voltage of the tunable filter.
Abstract:
Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
Abstract:
A biosensor based upon a vertically emitting, distributed feedback (DFB) laser is disclosed. In one configuration, the DFB laser comprises a replica-molded, one- or two-dimensional dielectric grating coated with a laser dye-doped-polymer as the gain medium. A sensor is also described in which the grating layer and the active layer are combined into a single layer. DFB lasers using an inorganic or organic thin film with alternating regions of high and low index of refraction as the active layer are also disclosed. The sensor actively generates its own narrowband high intensity light output without stringent requirements for coupling alignment, thereby resulting in a simple, robust illumination and detection configuration.
Abstract:
Photonic crystal (PC) sensors, and sensor arrays and sensing systems incorporating PC sensors are described which have integrated fluid containment and/or fluid handling structures. The PC sensors are further integrated into a sample handling device such as a microwell plate. Sensors and sensing systems of the present disclosure are capable of high throughput sensing of analytes in fluid samples, bulk refractive index detection, and label-free detection of a range of molecules, including biomolecules and therapeutic candidates. The present disclosure also provides a commercially attractive fabrication platform for making photonic crystal sensors and systems wherein an integrated fluid containment structure and a photonic crystal structure are fabricated in a single molding or imprinting processing step amendable to high throughput processing.
Abstract:
Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
Method and apparatus for detecting biomolecular interactions. The use of labels is not required and the methods may be performed in a high-throughput manner. An apparatus for detecting biochemical interactions occurring on the surface of a biosensor includes a light source. A first optical fiber is coupled to the light source and illuminates the biosensor. A second optical fiber detects a wavelength reflected from the biosensor. A spectrometer determines spectra of a reflected signal from the biosensor.
Abstract:
A biosensor is described having the form of a photonic crystal having defect cavities formed in a periodic pattern in the device. The invention provides a higher sensitivity and a greater degree of spatial localization of incoupled photons than previously reported photonic crystal biosensor devices.