Abstract:
A biosensor based upon a vertically emitting, distributed feedback (DFB) laser is disclosed. In one configuration, the DFB laser comprises a replica-molded, one- or two-dimensional dielectric grating coated with a laser dye-doped-polymer as the gain medium. A sensor is also described in which the grating layer and the active layer are combined into a single layer. DFB lasers using an inorganic or organic thin film with alternating regions of high and low index of refraction as the active layer are also disclosed. The sensor actively generates its own narrowband high intensity light output without stringent requirements for coupling alignment, thereby resulting in a simple, robust illumination and detection configuration.
Abstract:
Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
Abstract:
Biosensors are disclosed which include a surface for binding to sample molecule to the biosensor in the form of a porous, thin film of dielectric material, e.g., TiO2. In one example the porous, thin film is in the form of a multitude of sub-micron sized rod-like structures (“nanorods”) projecting therefrom. In one embodiment, the biosensor is in the form of a photonic crystal biosensor. The approach of depositing a thin film of dielectric nanorods may be applied to any enhanced fluorescence biosensor surface structure, including 1-dimensional photonic crystals, 2-dimensional photonic crystals, 3-dimensional photonic crystals, surface plasmon resonance surfaces, planar waveguides, and grating-coupled waveguides. The dielectric nanorod structures can be fabricated on the surface of a biosensor by the glancing angle deposition technique (GLAD).
Abstract:
Photonic crystal (PC) sensors, and sensor arrays and sensing systems incorporating PC sensors are described which have integrated fluid containment and/or fluid handling structures. Sensors and sensing systems of the present disclosure are capable of high throughput sensing of analytes in fluid samples, bulk refractive index detection, and label-free detection of a range of molecules, including biomolecules and therapeutic candidates. The present disclosure also provides a commercially attractive fabrication platform for making photonic crystal sensors and systems wherein an integrated fluid containment structure and a photonic crystal structure are fabricated in a single molding or imprinting processing step amendable to high throughput processing.
Abstract:
Methods of producing liquid handling biosensor devices are provided. The liquid handling biosensor devices allow detection of biomolecular interactions in liquid. The use of labels is not required and the methods can be performed in a high-throughput manner.
Abstract:
Enhancement of fluorescence emission from fluorophores bound to a sample and present on the surface of two-dimensional photonic crystals is described. The enhancement of fluorescence is achieved by the combination of high intensity near-fields and strong coherent scattering effects, attributed to leaky photonic crystal eigenmodes (resonance modes). The photonic crystal simultaneously exhibits resonance modes which overlap both the absorption and emission wavelengths of the fluorophore. A significant enhancement in fluorescence intensity from the fluorophores on the photonic crystal surface is demonstrated.
Abstract:
Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.
Abstract:
Methods and compositions are provided for detecting biomolecular interactions. The use of labels is not required and the methods can be performed in a high-throughput manner. The invention also provides optical devices useful as narrow band filters.