Abstract:
A method and apparatus for managing CNAME records such that CNAME records at the root domain are supported while complying with the RFC specification (an IP address is returned for any Address query for the root record). The authoritative DNS infrastructure acts as a DNS resolver where if there is a CNAME at the root record, rather than returning that record directly, a recursive lookup is used to follow the CNAME chain until an A record is located. The address associated with the A record is then returned. This effectively “flattens” the CNAME chain. This complies with the requirements of the DNS specification and is invisible to any service that interacts with the DNS server.
Abstract:
A proxy server in a cloud-based proxy service receives a message that indicates that a domain, whose traffic passes through the proxy server, may be under a denial-of-service (DoS) attack. The proxy server enables a rule for the domain that specifies that future requests for resources at that domain are subject to at least initially passing a set of one or more challenges. In response to receiving a request for a resource of that domain from a visitor, the proxy server presents the set of challenges that, if not passed, are an indication that that the visitor is part of the DoS attack. If the set of challenges are passed, the request may be processed. If the set of challenges are not passed, the request may be dropped.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server proxies messages to/from the different server including a set of signed cryptographic parameters signed using the private key on the different server. The different server generates the master secret, and generates and transmits the session keys to the server that are to be used in the secure session for encrypting and decrypting communication between the client device and the server.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server receives a premaster secret that has been encrypted using a public key bound with a domain for which the client device is attempting to establish a secure session with. The server transmits the encrypted premaster secret to the different server for decryption along with other information necessary to compute a master secret. The different server decrypts the encrypted premaster secret, generates the master secret, and transmits the master secret to the server. The server receives the master secret and continues with the handshake procedure including generating one or more session keys that are used in the secure session for encrypting and decrypting communication between the client device and the server.
Abstract:
A first packet is received at a proxy server from a client and includes a first incoming request for an action to be performed on an identified resource. The first packet is received at the proxy server as a result of a DNS request for a domain corresponding to the identified resource resolving to an IP address of the proxy server. The proxy server selects, based on at least in part on a set of parameters associated with the first packet, one of multiple IP addresses for use as a source IP address for a second packet that carries an outgoing request and transmits the second packet. The proxy server receives a third packet that includes an incoming response from the destination origin server in response to the outgoing request and transmits a fourth packet to the client that includes an outgoing response based on the incoming response.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server receives a premaster secret that has been encrypted using a public key bound with a domain for which the client device is attempting to establish a secure session. The server transmits the encrypted premaster secret to the different server for decryption along with other information necessary to compute a master secret and session keys for the secure session. The different server decrypts the encrypted premaster secret, generates the master secret, and generates session keys that are used in the secure session for encrypting and decrypting communication between the client device and the server and transmits those session keys to that server.
Abstract:
A proxy server in a cloud-based proxy service receives a secure session request from a client device as a result of a Domain Name System (DNS) request for a domain resolving to the proxy server. The proxy server participates in a secure session negotiation with the client device including transmitting a digital certificate to the client device that is bound to domain and multiple other domains. The proxy server receives an encrypted request from the client device for an action to be performed on a resource that is hosted at an origin server corresponding to the domain. The proxy server decrypts the request and participates in a secure session negotiation with the origin server including receiving a digital certificate from the origin server. The proxy server encrypts the decrypted request using the digital certificate from the origin server and transmits the encrypted request to the origin server.
Abstract:
A proxy server receives from a client device a request for a network resource that is hosted at an origin server for a domain. The request is received at the proxy server as a result of DNS request for the domain returning an IP address of the proxy server instead of an IP address of the origin server. The proxy server retrieves the requested network resource. The proxy server determines that the retrieved network resource includes at least one modification token that is of a type that indicates a threat to the client device. For at least this modification token, the proxy server automatically modifies at least a portion of the retrieved network resource that corresponds to that modification token. The proxy server transmits the modified network resource to the client device.
Abstract:
A request is received from a client device over a Virtual Private Network (VPN) tunnel. The request is received at a first one of a plurality of edge servers of a distributed cloud computing network. A destination of the request is determined and an optimized route for transmitting the request toward an origin server is determined. The optimized route is based at least in part on probe data between edge servers of the distributed cloud computing network. The request is transmitted to a next hop as defined by the optimized route.
Abstract:
An authoritative DNS server receives DNS requests for domains. The authoritative DNS server responds to the requests with address records that include IP addresses that are selected from a larger pool of IP addresses, where a first response to a DNS query for a domain can include IP addresses different from IP addresses included in a second response for the same domain. Also, the same IP addresses may be returned for a first domain and a different, second domain. The authoritative DNS server may randomly select the IP addresses to include in responses to the requests regardless of the domain.