Abstract:
Novel tools and techniques are described for providing media content to a plurality of set-top boxes (“STBs”) over a licensed spectrum and over an unlicensed spectrum. In an aspect, each of the plurality of STBs might comprise a first transceiver configured to receive media content or data over a licensed spectrum and a second transceiver configured to receive and send media content or data over an unlicensed spectrum. The first STB of the plurality of STBs might receive a first portion of the media content at the first transceiver and receive a second portion of the media content at the second transceiver from a second STB of the plurality of STBs. The plurality of STBs might query each other to determine available frequencies and/or bandwidth, and might store results of the query in a table in local memory or in a database accessible by all of the plurality of STBs.
Abstract:
Novel tools and techniques are described for auto-summarizing video and/or audio content. In some embodiments, a summary server might retrieve one or more time codes from a time code database, and might analyze the one or more time codes to determine at least one selected time code among the one or more time codes that exceeds a predetermined number of selections. The one or more time codes might correspond to one or more triggers, which might include user-inputted triggers, triggers associated with actions by a live audience, or broadcaster/distributor/producer-provided triggers (i.e., cue tones). The summary server might determine one or more selected segments of video or audio content corresponding to the at least one selected time code, and might create one or more summary tracks, where each of the one or more summary tracks might comprise each of the one or more selected segments of the video or audio content.
Abstract:
Methods, systems, devices, and software are disclosed for generating a network usage profile. Certain embodiments of the network usage profile include a devices-by-node profile, indicating the set of customer devices available for use in communicating with a customer-side network node located at a customer side of an access network over a period of time, where some of the customer devices are not in operative communication with the customer-side network node during a portion of that time. Other embodiments associate the network usage profile with customer information to generate device-by-customer profiles. Still other embodiments associate the network usage profile with network traffic information to generate traffic-by-device profiles. Even other embodiments associate the multiple sources and types of information to generate traffic-by-customer profiles and/or traffic-by-device-by-customer profiles. Any of the profiles may then be accessed by one or more parties for use in affecting various network services, including targeting content delivery.
Abstract:
Novel tools and techniques are described for auto-summarizing video and/or audio content. In some embodiments, a summary server might retrieve one or more time codes from a time code database, and might analyze the one or more time codes to determine at least one selected time code among the one or more time codes that exceeds a predetermined number of selections. The one or more time codes might correspond to one or more triggers, which might include user-inputted triggers, triggers associated with actions by a live audience, or broadcaster/distributor/producer-provided triggers (i.e., cue tones). The summary server might determine one or more selected segments of video or audio content corresponding to the at least one selected time code, and might create one or more summary tracks, where each of the one or more summary tracks might comprise each of the one or more selected segments of the video or audio content.
Abstract:
Novel tools and techniques are provided for implementing media content delivery. In some embodiments, a globally unique identifier (“GUID”) associated with a particular media content might be embedded in headers of packets of a transport stream of the media content. When the transport stream is received by a user device, the GUID might enable retrieval of the necessary metadata (and/or updates of metadata) for enabling presentation of the media content. Alternatively or additionally, ratings or similar information can likewise be embedded in the headers of packets or I-frames of the transport stream, which enables a user (e.g., parent) to easily block or skip objectionable content from children who may be present. Alternatively or additionally, the transport stream may be combined with auxiliary data streams containing metadata and other associated auxiliary content to create a combined transport stream, to ensure no lost or corrupted media content during transmission.
Abstract:
A system for intelligent video streaming a video controller having at least one processor and non-transitory computer readable media having a set of instructions executable by the at least one processor to receive a playback request from a user device for a live stream, determine, from the playback request, whether source streaming content for the live stream is being transcoded, and allocate an available transcoder to transcode the source streaming content. The system further includes a transcoding having at least one processor and non-transitory computer readable media having a set of instructions executable by the at least one processor to join the multicast stream, retrieve the source streaming content, and transcode the source streaming content, and provide transcoded streaming content for delivery to the user device.
Abstract:
Novel tools and techniques to enable more robust electronic program guides in television distribution systems. Some solutions can obtain data (e.g., from the Internet) about a program listed on an electronic program guide and integrate that data with electronic program guide. In some cases, this information can be obtained and/or updated dynamically, in real-time or near real-time, for example to provide, up-to-date information can be provided in the electronic program guide, rather than requiring the viewer to tune to an information channel. In some cases, the system can provide a generalized electronic program guide that can be rendered by the system to be displayed on a plurality of different devices.
Abstract:
Methods, systems, devices, and software are disclosed for generating a network usage profile. Certain embodiments of the network usage profile include a devices-by-node profile, indicating the set of customer devices available for use in communicating with a customer-side network node located at a customer side of an access network over a period of time, where some of the customer devices are not in operative communication with the customer-side network node during a portion of that time. Other embodiments associate the network usage profile with customer information to generate device-by-customer profiles. Still other embodiments associate the network usage profile with network traffic information to generate traffic-by-device profiles. Even other embodiments associate the multiple sources and types of information to generate traffic-by-customer profiles and/or traffic-by-device-by-customer profiles. Any of the profiles may then be accessed by one or more parties for use in affecting various network services, including targeting content delivery.
Abstract:
Novel tools and techniques to enable more robust electronic program guides in television distribution systems. Some solutions can obtain data (e.g., from the Internet) about a program listed on an electronic program guide and integrate that data with electronic program guide. In some cases, this information can be obtained and/or updated dynamically, in real-time or near real-time, for example to provide, up-to-date information can be provided in the electronic program guide, rather than requiring the viewer to tune to an information channel. In some cases, the system can provide a generalized electronic program guide that can be rendered by the system to be displayed on a plurality of different devices.
Abstract:
Novel tools and techniques are described for providing media content to a plurality of set-top boxes (“STBs”) over a licensed spectrum and over an unlicensed spectrum. In an aspect, each of the plurality of STBs might comprise a first transceiver configured to receive media content or data over a licensed spectrum and a second transceiver configured to receive and send media content or data over an unlicensed spectrum. The first STB of the plurality of STBs might receive a first portion of the media content at the first transceiver and receive a second portion of the media content at the second transceiver from a second STB of the plurality of STBs. The plurality of STBs might query each other to determine available frequencies and/or bandwidth, and might store results of the query in a table in local memory or in a database accessible by all of the plurality of STBs.