Abstract:
An integrated circuit having a memory array comprised of a plurality of memory cells arranged in rows and columns and a logic circuitry including column decoder and read/write circuitry, wherein each column includes a plurality of memory cells connected in parallel by way of a pair of true and complement bitlines extending from the memory array to the logic circuitry. In order to perform a complete voltage stress test of the memory array, inside the array true and complement bitlines are alternated so that every true bitline is adjacent exclusively to complement bitlines and every complement bitline is adjacent exclusively to true bitlines. According to a first embodiment of the invention, bitlines exiting from the memory array are connected directly to the logic circuitry, while according to a second embodiment, between the array and the logic circuitry, at least one pair of true and complement bitlines is twisted so that one bitline cross over the other. As a result, inside the memory array the true bitline of said at least one pair is adjacent exclusively to complement bitlines and the complement bitline of said at least one pair is adjacent exclusively to true bitlines.
Abstract:
A write global bus driver is provided within the data input buffer. The write global bus driver has the same circuit configuration as the read global bus driver so that it drives the output buffer with the very same type of signal and in the same way as the read global bus driver drives the output buffer. The write global bus driver is coupled to the global data bus for placing written data on the global data bus that is normally used only for read data. During each write cycle, the data is written simultaneously to the memory array and to the output buffer. The output buffer is a two-stage, pipelined output buffer. When data is stored in the first stage of the output buffer, whether write data or read data, it is maintained in the first stage on the same clock cycle that it is presented. On the subsequent clock cycle, the data from the first stage is transferred to the second stage and is provided as the output of the output buffer. In the event a read cycle immediately follows a write cycle, the write data is provided as the output from the output buffer as a result of the first read cycle being performed. During the second read cycle, the data read during the first read cycle is provided as the output.
Abstract:
A bias circuit for generating a bias voltage that tracks power supply voltage variations, and that is compensated for variations in p-channel transistor and process parameters, is disclosed. The bias circuit includes a voltage divider, such as a resistor divider, that produces a ratioed voltage based on the power supply voltage to be tracked. The ratioed voltage is applied to a first input of a differential stage, the output of which is applied to an intermediate stage including a drive transistor and a load; the second input of the differential stage receives a feedback voltage from an intermediate node that is connected to the source of a p-channel modulating transistor that has its gate biased so as to be in saturation, for example at ground. The current conducted by the p-channel modulating transistor depends upon the ratioed voltage from the voltage divider, and also on its transistor characteristics. This current is applied, via an output stage, to produce a reference voltage that tracks power supply voltage variations. This reference voltage may be applied, individually or in combination with an n-channel compensated reference voltage, to an output buffer to control output drive slew rates, or to a current source.
Abstract:
According to the present invention, a structure and method provides for single bit failures of an integrated circuit memory device to be analyzed. According to the method for analyzing a single bit failure of an integrated circuit memory device, a test mode is entered, bitline load devices of the integrated circuit memory device are turned off, a single bit of the integrated circuit memory device is selected, the device is placed into a write mode, a plurality of bitlines true and a plurality of bitlines complement of the integrated circuit memory device not associated with the single bit are then set to a low logic level, the bitline true and the bitline complement associated with the single bit is connected to a supply bus and a supply complement bus which is connected to test pads. Finally, the electrical characteristics of the single bit can be monitored on the test pads. According to the structure of the present invention, bitline load devices of the integrated circuit memory device are controlled by a test mode signal, the state of which determines when the test mode will be entered. These bitline load devices are connected to the bitlines true and complement which in turn are connected to the memory cell. Select devices, such as column select transistors, are connected to the bitline true and bitline complement; they are also connected to driver circuitry by a bus, such as a write bus, a read bus or a write/read bus. The driver circuitry is supplied with supply voltages as well as data signals. Further, a buffer circuit allows bitlines true and bitlines complement not associated with the single bit being tested to be pulled to a logic low level. A dummy structure also provides the opportunity to directly monitor the bitlines of the integrated circuit memory device without the need for microprobing.
Abstract:
A method and circuit for significantly reducing a delay added to a clock signal which clocks an output of a first circuit into an input of a second circuit in a semiconductor device. An output of a first circuit is connected to a data line. The first circuit is designed with elements having a selected set of design parameters, such as transistor dimensions and transistor orientation. A second circuit is connected to the data line and also receives a clock signal generated by a signal delay circuit. The signal delay circuit receives an output enable signal, and after a delay period, produces the clock signal in response to the output enable signal. At least a portion of the signal delay circuit utilizes elements having the selected set of design parameters utilized in the first circuit. Thus, as process variations affect the electrical properties and the speed of the transistors in the first circuit, the same process variations will proportionately affect the electrical properties and speed of transistors in the delay circuit. This automatically compensates for process-induced speed variations and eliminates the need for a time margin when providing a clock signal for clocking an output of a first circuit into the input of a second circuit.
Abstract:
A redundancy structure having fewer pass gates in the redundant decoder for quicker access to a redundant columns and a reduction in the complexity of the redundancy structure.
Abstract:
An output driver circuit for an integrated circuit is disclosed, where the output driver drives an output terminal with a high logic level having a voltage limited from the power supply voltage of the integrated circuit. The limited voltage is provided by applying a limited output high voltage to an output buffer, such that the drive signal applied to the gate of the pull-up transistor in the output driver is limited by the limited output high voltage applied to the output buffer. A voltage reference and regulator circuit for generating the limited output high voltage is also disclosed, and is based on a current mirror. The sum of the current in the current mirror is controlled by a bias current source, which may be dynamically controlled within the operating cycle or programmed by way of fuses. An offset compensating current source adds current into the reference leg of the current mirror to eliminate the development of an offset voltage in the current mirror, and the limited output high voltage is shifted by the threshold voltage of the pull-up drive transistor by way of a threshold shift circuit.
Abstract:
A dual-port data cache is provided having one port dedicated to servicing a local processor and a second port dedicated to servicing a system. The dual-port data cache is also capable of a high speed transfer of a line or lines of entries by placing the dual-port data cache in "burst mode." Burst mode may be utilized with either a read or a write operation. An initial address is latched internally, and a word line in the memory array is activated during the entire data transfer. A control circuit is utilized to cycle through and access a number of column addresses without having to provide a separate address for each operation.
Abstract:
According to the present invention, an integrated circuit device is capable of responding to more than one input threshold voltage level by making only minimal changes to the device. The input buffer of the integrated circuit device is modified to be a programmable buffer that is controlled by a control input signal which may be generated by several different control means. Such control means include a bond option, a mask option, a fuse option, a register option, and a voltage detector option.
Abstract:
According to the present invention, after a test data pattern has been written to selected static memory cells, the wordlines of the memory cells are turned off and the bitline true and bitline complement of the memory cells are simultaneously pulled to a predetermined logic level for the duration of the long write test so that the memory cells are disturbed. After the long write test, the contents of the memory cells are read to determine which memory cells contain corrupted data and therefore have bitline to memory cell leakage problems.