Abstract:
Methods and systems are provided for adjusting a dynamic scale indicator on a flight display of an aircraft. The method comprises receiving an operational status parameter for the aircraft and generating the dynamic scale indicator located on the flight display of the aircraft. The dynamic scale indicator includes a positive value range that represents operational status parameter values greater than a selected setting value and a negative value range that represents operational status parameter values less than the selected setting value. The operational status parameter is translated into a value that is represented on the dynamic scale indicator. The value ranges shown on the dynamic scale indicator are adjusted by fading the negative value range when the operational status parameter value is positive, fading the positive value range when the operational status parameter value is negative, and fading the value range to the extent that the value range exceeds the operational status parameter value.
Abstract:
A system and method for operating a dynamic vertical situation display on an aircraft includes generating display data for a dynamic vertical situation display displayed on a display based upon flight plan data from a flight management system, where the flight plan data includes a plurality of waypoints and one or more phases of flight. A current phase of flight of the aircraft and a number of waypoints currenting displayed on the dynamic vertical situation display on the display is determined, and instructions to dynamically change a size of the dynamic vertical situation display on the display are generated based upon at least one of the number of waypoints currenting displayed on the display and the current phase of flight of the aircraft.
Abstract:
A system for presenting broadcasted aeronautical information in an aircraft is provided. The system is configured to: capture a broadcasted aeronautical information message; parse the broadcasted message into a plurality of message components; extract a plurality of message features from the plurality of message components; categorize each message feature based on a flight phase to which the message feature pertains; group each categorized message feature into a predetermined one of a plurality of avionic subcategories; associate each subcategorized message feature with one of a plurality of context-based graphical elements, wherein each context-based graphical element is configured to display textual information descriptive of the message feature and/or graphical information descriptive of the message feature; and cause the display of descriptive information regarding a first category of the subcategorized message features via their associated context-based graphical element in a graphical user interface (GUI) display.
Abstract:
Methods and systems are provided for generating an alert for an aircraft potentially exceeding speed limits in airspace with speed limitations. The method comprises retrieving a flight plan for the aircraft and identifying airspace with speed limitations along the flight plan. A speed profile is generated based on the in-flight aircraft's current position, speed and trajectory. Any predicted speed violations are identified by comparing the speed profile with the airspace with speed limitations along the flight plan. A predictive time window is calculated that allows for the in-flight aircraft to decelerate sufficiently to comply with the speed limits of the airspace with speed limitations. The predictive time window includes a zone for the aircraft to reduce its airspeed and a reaction buffer zone to allow the aircrew sufficient time to comply with instructions to decelerate the aircraft. Finally, an alert is generated for the crew of the in-flight aircraft upon entering the predictive time window.
Abstract:
A method and system for use onboard an ownship, the method includes generating on a cockpit display an alignment symbol, track bug, and heading bug to aid to align a track angle and heading of the ownship with a runway course by a pilot; and enabling a pilot to view the alignment symbol, the track bug and the heading bug and to maneuver the ownship to maintain first, an alignment of the heading to the runway course and second, to attempt to align a track angle of the ownship with the runway course by adjustments made to maneuver the ownship in a course of landing by a view of a relative position of each of the alignment symbol, the track bug, and the heading bug to each other to serve as an indicator to the pilot of adjustments needed in the course of landing.
Abstract:
A system and method are provided that improve upon existing aircraft display systems by generating and updating an overrun image that may be overlaid on a variety of panoramic and landscape images on a display device. The overrun image displays stopping locations for all relevant available stopping devices, as determined from the far end of the selected runway. In addition, the aircraft display system determines an advisory zone on the selected runway and presents limited symbols and images in and near the advisory zone that indicate distances and relevant information.
Abstract:
A vehicle system and method are provided. The system includes a control module coupled to an imaging system and a display system. The control module receives position and location information of the aircraft, and processes that with map features to identify a landing location. The control module commands the display system to render on display system a landing image having thereon a sensor based visually enhanced area defined by a field of view (FOV) of first dimensions. The control module continually receives and processes visibility reports to determine the visibility at the landing location. When there is low visibility at the landing location, the control module reduces the FOV dimensions.
Abstract:
A method for providing alerts or indications to an aircrew of an aircraft that is in-flight and approaching a destination airport includes receiving an aircrew runway selection from the aircrew of the aircraft, automatically generating a probable runway selection by the aircraft, and determining a position of the in-flight aircraft with reference to a threshold point. If the aircraft is prior to the threshold point, the method includes generating alerts and indications to the aircrew based solely on the received runway selection into the FMS from the aircrew of the aircraft and not on the automatically-generated probable runway selection from the aircraft. Alternatively, if the aircraft is past the threshold point, the method includes generating alerts and indications to the aircrew based solely on the automatically-generated probable runway selection from the aircraft and not on the received runway selection into the FMS from the aircrew of the aircraft.
Abstract:
A flight deck display system for an aircraft includes a processor architecture configured to receive aircraft instrument data, waypoint restriction information, and position data for the aircraft and, based upon the received data, generate image rendering display commands. The system also includes a display element configured to receive the image rendering display commands and, in response thereto, to render a display that includes a perspective view of terrain and at least one waypoint marker corresponding to an approaching waypoint. The waypoint marker includes visually distinguishable characteristics that convey waypoint restriction information (e.g., altitude or airspeed constraint information that governs the waypoint).
Abstract:
A system and method is provided for anticipating a missed approach point (MAP) during an instrument landing of an aircraft. Symbology is generated and displayed that graphically represents a lateral distance between a runway threshold and a virtual inner marker. The MAP is identified as the location of the aircraft when the symbology reaches a displayed runway threshold.