Abstract:
Provided is a method of manufacturing a memory device that comprises a gate including uniformly distributed silicon nano dots. The method includes forming a gate on a substrate, the gate including, stacked in sequence an insulating film, nano dot layers separated by a predetermined lateral distance, and a conductive film pattern, forming a source region and a drain region contacting the gate in the substrate, and forming first and second metal layers on the source region and the drain region, respectively.
Abstract:
Provided are a method of horizontally growing carbon nanotubes and a carbon nanotube device. The method includes: depositing an aluminum layer on a substrate; forming an insulating layer over the substrate to cover the aluminum layer; patterning the insulating layer and the aluminum layer on the substrate to expose a side of the aluminum layer; forming a plurality of holes in the exposed side of the aluminum layer to a predetermined depth; depositing a catalyst metal layer on the bottoms of the holes; and horizontally growing the carbon nanotubes from the catalyst metal layer. The carbon nanotubes can be grown in directions rather that horizontally relative to the substrate when laid flat.
Abstract:
A single transistor type magnetic random access memory device and a method of operating and manufacturing the same, wherein the single transistor type magnetic random access memory device includes a substrate, first and second doped regions spaced apart from each other, a gate dielectric layer on a portion of the semiconductor substrate between the first and second doped regions, a magnetic tunnel junction on the gate dielectric layer, word lines on the magnetic tunnel junction extending in a first direction which is the same direction as the second doped region, bit lines connected to the first doped region in a second direction perpendicular to the first direction, and an insulating layer covering the gate dielectric layer, the magnetic tunnel junction, and the word lines. The single transistor type magnetic random access memory device has a simple circuit structure, has a prolonged lifetime and is easy to manufacture.
Abstract:
A single transistor type magnetic random access memory device and a method of operating and manufacturing the same, wherein the single transistor type magnetic random access memory device includes a substrate, first and second doped regions spaced apart from each other, a gate dielectric layer on a portion of the semiconductor substrate between the first and second doped regions, a magnetic tunnel junction on the gate dielectric layer, word lines on the magnetic tunnel junction extending in a first direction which is the same direction as the second doped region, bit lines connected to the first doped region in a second direction perpendicular to the first direction, and an insulating layer covering the gate dielectric layer, the magnetic tunnel junction, and the word lines. The single transistor type magnetic random access memory device has a simple circuit structure, has a prolonged lifetime and is easy to manufacture.
Abstract:
A ferroelectric random access memory having a discharge circuit for stably discharging pyroelectric charges generated in a ferroelectric capacitor without affecting write and read operations is provided. In the ferroelectric random access memory having the discharge circuit according to the present invention, the pyroelectric charges between the ferroelectric capacitor and the FET of the memory cell, generated during the write and read operations are automatically discharged through a resistor since the resistor is included as a discharge path between the contact point of the ferroelectric capacitor and the FET of the memory unit cell and the grounding point. Accordingly, the function of turning on and off the discharge path for discharging the pyroelectric charges is not necessary and the polarization turbulence due to the pyroelectric charges is not generated.